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Abstract In automotive industry, validation and maintenance of product configuration data
is a complex task. Both orders from the customers and new product line designs from the
R&D department are subject to a set of configuration rules to be satisfied. In this work,
non-monotonic computational logic, Answer Set Programming in particular, is applied to
industrial-scale automotive product configuration problems. This methodology provides ba-
sic validation of the product configuration documentation and validation of single product
orders, where Reiter style diagnosis provides minimal changes needed to correct an invalid
order or a product configuration rule set. In addition, a method for discovering groups of
product configuration variables that are strongly related can be obtained by small modifica-
tion of the basic logic program, and by the usage of cautious and brave reasoning methods.
As a result, options that are used in every, or respectively in no configuration, can easily be
identified, as well as groups of options that are always used together or not at all. Finally
it is possible to single out mandatory and obsolete options, relative to a preselected set of
included or excluded options. Experimental results on an industrial dataset show applicabil-
ity, example results, and computational feasibility with computation times on the order of
seconds using a state-of-the-art answer set solver on standard PC hardware.
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1 Introduction

In contrast to conventional mass production, where a product is designed once and then
produced in large quantities, products are now produced increasingly more in a customized
manner according to customer demands. Stanley Davis used the term “mass customization”
(mass personalization, personalized mass production), being the first to refer to this devel-
opment [17]. Tseng and Jiao then defined mass customization as “producing goods and
services to meet individual customer’s needs with near mass production efficiency” [18]. A
variety of examples can be given for this kind of customizable products that are supplied to
the mass market: computers, cars, furniture, cosmetic products, bicycles, modular kitchen
systems. Examples for mass customization of services are Internet portals that adapt them-
selves to the preferences of individual users [81].

In recent years, this tendency has gained momentum with the introduction of the term
“Industrie 4.0” (similarly the term “Industrial Internet” in the U.S.) which was originally a
vision that brings the concepts of Cyber-Physical Systems [53,72], Internet of Things and
Internet of Services to enable an utterly flexible and individualized mass production (mass
customization) at costs comparable to mass production [13]. In order to enable this vision,
flexible product configuration management systems are needed, which can support the pro-
duction system online with results to queries that arise spontaneously as the individualized
production orders come in. In this paper it is shown how a rich set of queries about con-
structible car variants and dependencies between configuration parameters can be processed
in feasible time.

Mass customization may seem self-contradictory at first glance, since it involves both
terms, mass and customization. The key concept that eliminates the seeming contradiction
is the modular production. Modular production becomes possible by standardizing the in-
terfaces of the constituent parts of a product. Thus, by combining varieties of different parts
of a product, it becomes theoretically possible to produce as many variations of a product as
the cartesian product of the number of varieties of its constituent parts. In practice, there are
many production rules that restrict the combination of the parts: thousands of such restric-
tive rules are used in the production of modern complex products. While there are many of
these constraints, the number of potential product variations still remains high. The indus-
trial benchmark used to demonstrate feasibility of the approach introduced in the following
is the Renault car benchmark [3] which features about 1.4 · 1012 variations.

Automotive product configurations are manufactured after they have been ordered as a
result of customer choices. Customers can choose between different body types (5-doors,
4-doors, station wagon, SUV, etc.), trim levels, engine types, gear types, exterior colors,
interior upholstery types, and additional to these, accessories and options that are offered
in a large range. Despite all of these possibilities of choice, not all configurations are con-
structible. Production constraints, or restrictive production rules, can be legal, marketing
related, geometric (space constraints), electrical or related to engineering (part compatibil-
ity). For example, a specific air conditioning system could only be installed in combination
with a battery of a certain size or with an engine type that produces at least a certain level of
horsepower. This rule would be an example of a compatibility constraint.

In an environment where the number of product lines increases, and even the distinction
between them becomes blurred while the product customization is increasingly becoming
more prevalent, product configuration rules have to be managed and analyzed permanently,
because addition or change of a single rule can have far-reaching consequences for the set
of feasible configurations:
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– the configuration can become inconsistent, which means that there is no set of config-
uration parameters that satisfies all rules, and no product can be configured/produced
according to such a set of rules;

– the configuration can contain possible parameter values that are never used because all
possible usages are ruled out by one or another constraint.

As configuration rules concern the same set of parameters, small changes can have big and
unforeseen effects, for example the modification of a rule about the seat system can eliminate
all configurations for a certain country, without making the configuration inconsistent.

Therefore, after modifying configuration rules, the configuration rule set should be val-
idated against inconsistencies and other potentially undesired effects of the new rule should
be analyzed. The space of potential solutions is huge, therefore using explicit enumeration
for checking is impossible. Besides validating the rule set, finding significant patterns in the
configuration space and predicting potentially harmful effects of modifications of the rule
set is a challenging task.

In this work, motivated by these challenges, a novel method for validating and analyzing
industrial-scale configuration rule sets is presented. The method is based on Answer Set Pro-
gramming (ASP) which is a declarative knowledge representation paradigm. The approach
presented here is a translation of the Renault benchmark configuration rules into an ASP
program that reproduces the semantics of the benchmark configuration space, and a proof of
correctness of this transformation (the encoding is also applicable to similar configuration
instances).

In case of an inconsistency, it is necessary to diagnose the cause of inconsistency in the
rule set, so that it can be repaired (made satisfiable). Usually the aim is a repair with minimal
changes. To find potential causes of inconsistency, Reiter style diagnosis [73] is realized in
ASP rules, based on prior work on diagnosis with ASP [10,19] and applications of ASP
diagnosis in diverse areas such as cognitive robotics [24] and knowledge integration [21].

For identifying options that are always used or options that are never used, the method
described in the following utilizes specific ASP querying modes (brave and cautious rea-
soning) which allow to obtain from answer sets those parameters that are always true (or
false) over all constructible car variants, without enumerating all these variants explicitly.
This analysis is useful as follows: once found, parts belonging to obsolete options can be
removed from production warehouses to reduce administrative and storage-related costs.
Mandatory parts are to be considered as such in product configuration management sys-
tems, ERP systems, storage management and production planning to decrease processing
time and thus reduce costs.

Moreover, the method presented permits an even more detailed look into the structure
of the configuration space: the identification of find groups of options that are always used
together. If one option in such a group is not used, other options also cannot be part of
any constructible car variant. This analysis result can be used to arrange the manufacturing
logistics in the production environment more efficiently, and indeed the Renault benchmark
contains several examples of such option groups.

Finally it is possible to apply all the above reasoning about the configuration space
relative to a set of preset configuration parameters. This can be useful to analyze the con-
figuration space only for a particular country or excluding a particular engine type, or com-
binations thereof.

Experiments with the Renault benchmark on standard PC hardware show that ASP can
be applied to real-world industrial-scale automotive configuration problems in a feasible
way, which even allows the integration of some of the applications into an interactive user
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interface that can give immediate feedback about consistency and other properties of the
configuration rule set at hand.

The rest of this paper is organized as follows. Preliminaries of product configuration rule
sets, the Renault benchmark, and a short overview of Answer Set Programming is given in
Section 2, related work is presented in Section 3, a transformation of the configuration prob-
lem into the ASP formalism, and a proof of correctness of this representation is given in
Section 4, several applications based on this representation (validating single order configu-
rations, finding rules that make a configuration problem inconsistent, identifying configura-
tion settings that are always true or always false, discovering groups of parts/settings that are
always used together (or not at all), and finally all these queries relative to a preselected set
of parameter values) are brought out in Section 5, performance tests on the Renault bench-
mark are reported in Section 6, and conclusions and future directions of this research are
described in Section 7.

2 Preliminaries

2.1 Industrial-scale Configuration Benchmark

The configuration rule set used in this work sources from a related work by Amilhastre et
al. [3]. Originally, it was provided by the French Renault DVI car manufacturer. The rule set
documents the configuration of the Renault Megane family of cars. In the file, information
like variables, domains of variables and rules for the combinations of the variables are given.
Variables represent different configuration options for a car such as the type of engine, the
country the car is going to be built for, or the type of air conditioning. The configuration rule
set is available in different formats in the CLib Configuration Benchmarks Library [88].
This work uses CP format syntax [47] which is beneficial for presentation reasons.

The product documentation consists of a set of variables V = {v1, . . . , vn} where each
variable vi has a domain definition Di = {di1 , . . . , dim}, moreover there is a set of rules
R = {r1, . . . , rk}.

The following is an example for a rule in CP format.
(( (var3==M5 && var5==FRAN && var6==DG)
|| (var3==M5 && var5==DOTO && var6==DG)

.

.

.
|| (var3==ND1G && var5==CETI && var6==DG)
));

A rule comprises a disjunction of conjunctions of variable assignments. Thus, each rule
is in disjunctive normal form (DNF), if variable assignments are interpreted as propositions,
more precisely as positive literals. Since all rules together must hold, the logic formula to be
satisfied is a conjunction of DNF formulae. Conjunctions of variable assignments are called
minterms in the rest of the paper.

The logical formula for a rule set formalizing the product documentation containing k
rules then can be formulated as follows:

Φ =
∧

1≤l≤k

rl

where rules of the form above are disjunctions of conjunctions of literals of the form vi ==
dij where vi ∈ V and dij ∈ Di.
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The Renault benchmark [3] has the following properties.
– It contains 101 variables with their domain sizes varying from 2 to 43, and 113 rules.
– The number of solutions of the problem is about 1.4 ∗ 1012 [3].
– The rule set in CP format occupies 23.9 MB with nearly 195 500 lines of code.

2.2 Answer Set Programming

Answer Set Programming (ASP) is a KRR (Knowledge Representation and Reasoning) for-
malism that aims to provide a balance between expression power, ease of use, and computing
performance [37,56,31,36,11,15]. In the following, ASP features that are relevant for this
work are presented.

An atom is of the form p(x1, . . . , xl) with 0≤ l, and if l=0 the atom is written short
as p. An ASP program P consists of a set of rules, where a rule r is of the form

α←β1, . . . , βn, notβn+1, . . . , notβm (1)

where α and βi are atoms, called head and body atoms of r, respectively. H(r) = {α} is
called the head of r.B+(r) = {β1, . . . , βn} andB−(r) = {βn+1, . . . , βm} are called the
positive and the negative body of r, respectively. A rule is a fact if m=0, in that case the
arrow of a← is usually omitted, a rule is a constraint if k=0. Atoms can contain constants,
variables, and function terms, and a program must permit a finite instantiation. Semantics of
an ASP program P is defined based on the ground instantiation grnd(P ) and Herbrand base
HBP of P : an interpretation I ∈HBP satisfies a rule r iff H(r)∩ I 6= ∅ or B+(r) 6⊆ I or
B−(r)∩ I 6= ∅; I is a model of P if it satisfies all rules in P . The reduct P I of P wrt. I is
the set of rules

P I = {H(r)←B+(r) |B−(r)∩ I = ∅}

and an interpretation I is an answer set iff it is a ⊆-minimal model of P I .
Intuitively, an atom a is true in an answer set iff there is at least one rule with a in the

head and a satisfied body, and the truth of the atoms satisfying the body is not due to a
positive cycle through that atom a, i.e., ASP prevents self-justifications of atoms in cycles
such as a← a.

ASP allows recursive definitions without becoming undecidable, thus it permits to ex-
press transitivity which can not be modeled in first order logic [1,15] as follows.

part of(X,Y )← part of(X,Z), part of(Z, Y ).

Atoms can contain variables, such programs are evaluated by first instantiating them with a
‘grounder’ tool.

Constraints are rules without a head.

← b1, . . . , bn, not bn+1, . . . , not bm.

Intuitively, a set of atoms that satisfies the body of this constraint cannot be an answer set.
A useful feature of the ASP language are choice rules: these rules have heads with choice

constructions that contain multiple atoms and a cardinality limit:

l{a1, . . . , an}u←B.
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Intuitively, such a rule states, that if the body B is satisfied in an answer set, then at least
l and at most u of the atoms in the set {a1, . . . , an} must be true in the answer set. If the
body condition B is not given, such a rule directly generates a space of potential solutions.

Additionally to the language features discussed above, Answer Set Programming has
been enhanced with a variety of extensions:

– Strong negation allows mixing of ¬a and not a for more concise and more intuitive
knowledge representation. Strong negation can be rewritten to weak (not) negation [38].

– Aggregates are grouping functions similar to those in database language SQL: #count,
#sum, #max, and #min are examples of group functions that are implemented by
Answer Set Programming languages [16].

– Furthermore, optimization criteria can be specified as #maximize or #minimize ex-
pressions or as weak constraints which are constraints that impose a cost on the answer
set when they are violated.
Details of syntactic restrictions, syntactic elements, and semantics of ASP are described

in the ASP-Core-2 standard [16].

3 Literature Survey

Research in product configuration goes back to the end of the 1970’s and is still an active
research area. There are many works both in the theory, comprising definitions and models
of product configuration [63,66,44,49,82,50,77,93], and in the practice of the field in form
of product configurator software systems. According to Sabin et al. product configurators
can be classified to rule-based, model-based, and case-based approaches [76].

Rule-based configurators have been developed as expert systems that execute rules in
form ‘IF condition THEN consequence’ to generate valid product configurations. Some
of the prominent examples of rule-based configurators are R1/XCON, a configurator for
computer systems [8,60,85], and the configurator system VT (vertical tranportation) by the
Westinghouse Elevator Company to configure elevator systems [59]. As expert systems us-
ing production rules in a forward-chaining manner, rule-based systems had no separation
between representation of domain knowledge and control strategy [76]. This drawback in
the chosen knowledge representation resulted in problems of knowledge base development
and maintenance [40,45].

Model-based knowledge representation technologies have emerged as a solution to ad-
dress these shortcomings of the early rule-based configurators. Model-based configurators
introduced a clear separation of the business logic representing the product configuration
knowledge and the problem solving knowledge needed to find consistent configurations.
One of the major representatives of the model-based approaches are the constraint-based
systems. Representing a product configuration problem as a Constraint Satisfaction Problem
(CSP) in terms of variables, domains, and constraints, and solving it using search algorithms
independent of the product knowledge has proven to be successful for configuring processes
with a fixed and pre-defined set of component types [87,63]. Mittal and Falkenhainer [62]
proposed an extension to the classical CSP, called dynamic CSP, to represent complex con-
figuration problems, where additional component types are to be included in the configu-
ration according to the decisions in the configuration process. Furthermore, Aldanondo et
al. proposed the requirements for modeling continuous variables, and numerical constraints
over discrete and continuous variables [2]. Xie, Henderson, and Kernahan [99] extended the
classical CSP-based modeling with an approach to represent continuous variables.



Applications of Non-monotonic Reasoning to Automotive Product Configuration Using ASP 7

Case-based reasoning tries to solve a new configuration problem by finding a similar,
previously solved problem and adapting its solution to the requirements of the new problem
[76]. A relatively recent example to the case-based reasoning is the approach of Tseng et
al. [95] to product configuration and BOM (bill of material) generation problems.

Apart from these main categories, there have also been completely different approaches
to product configuration problems. Kusiak et al. apply clustering as a data mining method to
identify product configurations that can increase the effectiveness of the enterprise resources
analyzing large amounts of sales data available in companies [52,86].

Hadzic et al. developed a two-phase solution for interactive product configuration prob-
lems [42]. In the first off-line phase, they compiled the solution space of the problem to a
Boolean domain using BDDs (Binary Decision Diagrams). Second, if the resulting BDD
was small enough, they embedded this representation in an online configurator and utilized
for fast, complete, and backtrack-free interactive product configuration. The solution has
been extended in a later work with scenarios involving cost functions, which express user
preferences using multi-valued decision diagrams (MDDs) [4].

Felfernig et al. showed how the techniques from software engineering like object-ori-
ented modeling and knowledge-based systems can be employed to design knowledge-based
configuration systems [26,27]. They proposed the application of model-based methods for
the validation of knowledge bases and diagnosis of unfeasible customer requirements. The
developed system represents the configuration data in XML corresponding to their UML
representation. This model is then translated into the representation of a constraint-based
off-the-shelf configuration tool (ILOG Configurator) to solve configuration tasks. They also
provided formal definitions for configuration problems and their related terms.

Towards the end of the 1990’s, the industry began to adopt product configuration tech-
nologies. As a result of this, industrial strength configuration environments like Tacton [68],
ConfigIT [64], EngCon [5], and ILOG [48,58] have emerged. These solutions were also
increasingly integrated into ERP (Enterprise Resource Planning) systems like SAP [41],
BAAN [100], and ORACLE.

Product configuration problems from the automotive industry have been investigated
before:

Amilhastre et al. extended the CSP framework to solve product configuration problems
as interactive decision support problems. The Renault benchmark configuration rule set orig-
inates from their work [3]. They used an automaton model to represent the set of solutions
of the configuration problem as a CSP. Through exploitation of this data structure, they
could ensure both consistency maintenance and computation of maximal consistent subsets
of user’s choices efficiently. Whereas they use CSP methods in their approach, this work
uses ASP and defines and realizes additional applications based on special ASP reasoning
modes.

Pargamin used a product knowledge compilation approach to develop a configuration
engine [70]. Through compilation, the configuration variables are divided into clusters orga-
nized as a tree. Inferences are done locally in each cluster, and then the new state of the node
is propagated to other nodes to reach a global solution. In a following work, the solution has
been extended with non-Boolean variables to enable preference-based optimization [71].

Sinz et al. demonstrated that formal methods can be applied to validate real-world au-
tomotive configuration data using a SAT-solver [51,80,81]. They also enhanced the perfor-
mance of their solutions using parallel implementations [79,12]. Their consistency support
tool (BIS) works on an existing database containing Boolean constraints about valid config-
urations and about how they can be transformed into constructible configurations. BIS can
check inconsistencies in product documentation using a SAT-solver that is modified for that
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kind of problems. While the approach presented in this work is similar to their application,
the methods presented here are based on a different formalism and additional applications
are brought out here.

Walter et al. applied MaxSAT to automotive configuration. Having this approach, they
could not only obtain an answer about the satisfiability but also repair suggestions for in-
consistent configuration constraints or invalid orders computing the maximum subset of
constraints that can be satisfied [98,97,96].

Especially in the last decade, there has been impressive progress in the development
of efficient satisfiability solvers (SAT-solvers) that solve formulae written in propositional
logic [39]. State-of-the-art SAT-solvers can solve hard problem instances with more than one
million variables and several millions of constraints. Thus, it became possible to apply these
solvers on large-scale real-world problems. These achievements in the SAT community have
greatly influenced the logic programming and KRR communities and paved the way to the
ASP paradigm.

ASP has been used in several works to address product configuration problems [7,28,
65,78]. Soininen et al. proposed a rule-based language for product configuration using ASP
[83,84,92]. In the scope of their work, they realized a prototype implementation for the
conversion of rules into normal programs. They used computer system configuration as an
example for their prototype implementation. The configurator software WiCoTin [91] and
its commercial version VariSales [90] enable a component-oriented representation of con-
figuration problems, and were proven to be applicable in several application domains. The
method described in this paper is focused on application scenarios that are beneficial in the
analysis of industrial-scale automotive product configuration.

Some examples to the application of ASP to diagnosis are as follows. Syrjänen [89]
and Gebser et al. [35] used ASP for debugging ASP programs, Eiter et al. described a
generic diagnosis frontend for the DLV solver [19], Erdem et al. used ASP for diagnosing
plan failures based on causal reasoning in cognitive robotics [24], and Eiter et al. described a
method for diagnosing inconsistency in non-monotonic heterogeneous multi-context system
[21].

Other than in product configuration and diagnosis, ASP has also been applied success-
fully to a wide range of areas like robotics [22,25,43,101], decision support systems [67],
workforce management [74], intelligent call routing [55], and configuration and reconfigu-
ration of railway safety systems [6]. For a more detailed account of the applications of the
ASP, the reader is referred to [23].

Main contribution of the present work can be summarized as follows. Cautious and brave
reasoning methods are used in novel applications to discover groups of product configuration
variables that are strongly related to each other. In this manner, options that are used in
every, or respectively no configuration, and groups of options that are always used together
or not at all, can be easily identified, and it is possible to single out mandatory or obsolete
options relative to a preselected set of options. Furthermore, as a theoretical contribution,
a proof is provided for the proposition, that for every configuration problem that is defined
as a conjunction of DNF-rules, an answer set program can be created, answer sets of which
correspond 1-1 with the admissible configurations of that configuration problem.

A limitation of the standard ASP approach, as in this paper, is that the continuous pa-
rameters can not be represented in the language, so that optimization with real values is
not applicable. A solution to this limitation would be using a hybrid solver that combines
the Boolean solving capacities of the ASP with techniques for using continuous variables
from the area of Constraint Programming or SMT (Satisfiability Modulo Theories). Exam-
ples of such systems are Clingcon [69], EZCSP [9], and Dingo [46]. Another limitation of
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the ASP is that it lacks non-Herbrand functions, i.e., functions in the mathematical sense,
where the value of a term changes with its arguments. ASP uses Herbrand models, therefore
distinct terms can never be equal. To address this limitation, ASPMT (Answer Set Program-
ming Modulo Theories) [54], application-specific reasoning interfaces [29], and the HEX
framework [20] as a generalization of the standard ASP have been proposed. Such hybrid
reasoning techniques are necessary only for application scenarios which contain continuous
parameters and constraints on them, therefore they are not considered in this work for the
Renault benchmark.

In the diagnosis of inconsistencies, cardinality-minimal diagnosis is performed, as op-
posed to subset-minimal diagnosis due to Reiter [73] to focus on the domain-specific en-
coding in automobile configuration. Brewka et al. describe the asprin framework for adding
preferences to ASP programs [14], for example subset-minimality or cardinality-minimality,
and report that their encoding computes the former by a more complex encoding, but in
shorter time, compared to the latter. Hence the approach presented in this paper can easily
be extended without efficiency drawbacks, to subset-minimal diagnoses.

4 Representation of Industrial Configuration in ASP

In Section 2.1, a formalization of the product configuration rule set was provided. In this
section, a transformation from this formalization into an ASP program is described, and a
proof that this transformation represents the semantics of the original configuration problem
is provided.

The transformation is performed as follows.
1. Replace all variable and value comparisons of the form vi == dij with single literals

of the form vi dij .
2. Number all minterms of all rules of the form (p1∧p2∧· · ·∧pn−1∧pn) with t = 1, . . . , z

and for each minterm create an ASP rule of the form

ct← p1, p2, ..., pn−1, pn. (2)

3. For minterms k = l, . . . ,m of a single rule, define the following ASP constraint.

← not cl, not cl+1, . . . , not cm−1, not cm. (3)

4. For each variable vi ∈ V with domain {di1 , . . . , diu}, define an ASP choice rule as
follows.

1{vi di1 ; vi di2 ; . . . ; vi diu}1← . (4)

Intuitively, in step 2 the truth value of minterm t is represented by atom ct. Step 3 ensures
that no solution violates a rule, and step 4 defines potential solutions as an assignment of
exactly one domain element for each variable vi.

Example 1 Parts of the rules of the Renault product documentation in CP format is as fol-
lows.

...
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(( (var1==S64 && var3==M9 && var81==BVM5
&& var94==EU93 && var95==CRIT1870CC
&& var96==CRIT095CV && var99==JC5
&& var100==CRIT784 && var101==F8Q)

|| (var1==S64 && var3==M9
&& var81==BVM5 && var94==EU93
&& var95==CRIT1870CC && var96==CRIT095CV
&& var99==JC5 && var100==CRIT786
&& var101==F8Q)

...

|| (var1==V25 && var3==MJ && var81==BVM5
&& var94==EU96 && var95==CRIT1870CC
&& var96==CRIT070CV && var99==JB1
&& var100==CRIT788 && var101==F8Q)

));

...

Steps 1 and 2 yield the following.

c208←var1 S64 , var3 M9 , var81 BVM5 ,

var94 EU93 , var95 CRIT1870CC ,

var96 CRIT095CV , var99 JC5 ,

var100 CRIT784 , var101 F8Q .

c209←var1 S64 , var3 M9 , var81 BVM5 ,

var94 EU93 , var95 CRIT1870CC ,

var96 CRIT095CV , var99 JC5 ,

var100 CRIT786 , var101 F8Q .

...

c371←var1 V25 , var3 MJ , var81 BVM5 ,

var94 EU96 , var95 CRIT1870CC ,

var96 CRIT070CV , var99 JB1 ,

var100 CRIT788 , var101 F8Q .

The first rule in the CP format is converted into the ASP rules with rule heads from c208 to
c371. (In this example, 207 minterms were produced before converting this rule.)

Step 3 introduce the following ASP constraints which specify that at least one of the
variables denoting the minterms of a CP rule is true.

← not c208, not c209, . . . , not c371.

After this step, there are as many constraints of this kind as there are rules in CP format.
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Step 4 creates the following choice rules which intuitively choose exactly one domain
element for each variable.

1{var1 B64 ; var1 D64 ; var1 E64 ;

var1 F64 ; var1 J64 ; var1 K25 ;

var1 L64 ; var1 S64 ; var1 V25}1.
1{var2 E0 ; var2 E1 ; var2 E2 ;

var2 E3 ; var2 E5}1.
...

1{var101 D7F ; var101 E7J ; var101 F3R;

var101 F4R; var101 F7R; var101 F8Q ;

var101 F9Q ; var101 K4J ; var101 K4M ;

var101 K7M }1.

Concrete examples for answer sets are given in Section 5.
Below the correct representation of the configuration problem by the above rules is

shown.
The formal definition for configuration problems and resulting configurations that are

admissible with respect to a set of configuration rules is as follows. (Note that these were
described intuitively in Section 2.)

Definition 1 (Configuration Problem): A configuration problem is a triplet C := (V,D,R),
where V := {v1, v2, . . . , vn} is the set of variables, D := {D1, D2, . . . , Dn} is the set of
the variable domains, and R is a propositional logic formula using only Boolean variables
pij ∈ P representing sets of equivalences vi == dij , where vi ∈ V and dij ∈ Di.

Definition 2 (Configuration Problem with DNF rules): A configuration problem with DNF
rules is a triplet CDNF := (V,D,RDNF ), where V := {v1, v2, . . . , vn} is the set of
variables, D := {D1, D2, . . . , Dn} is the set of the variable domains, andRDNF is in the
following form:

RDNF :=
∧

1≤l≤k

rl

rl is a formula in disjunctive normal form, i.e., rl is a set of sets of equivalences vi ==
dij , where vi ∈ V and dij ∈ Di.

Definition 3 (Admissible Configuration): Given a configuration problem C, an admissible
configuration Cadm is an assignment of pij ∈ P to {0, 1} that satisfiesR.

Proposition 1 Given a configuration problem CDNF , the answer sets AS(P (CDNF )) of
program P (CDNF ) correspond 1-1 with admissible configurations of CDNF .

For the proof of correctness, a propositional theory is created from the rules in CP format
using the Tseitin transformation [94], moreover the ASP formulation is also converted into
a propositional theory using the transformation proposed by Lin and Zhao [57]. At the end,
it is shown that these two propositional theories are equivalent to each other.
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Proof (Proposition 1) The rules in CP format can be seen as a conjunction of DNF formulae.
Tseitin’s transformation yields a propositional theory as follows: for every minterm in Step
2 above, new variables ct are added, where t is a running number from 1 to the number of
all minterms in all rules. Thus, a unique variable is obtained for every minterm.

ct ≡ (p1 ∧ p2 ∧ · · · ∧ pn−1 ∧ pn)

According to the Tseitin transformation, the following clause with all the variables that
represent the minterms of a rule, which are numbered with indices k = l, . . . ,m, is created
for each rule:

(cl ∨ cl+1 ∨ · · · ∨ cm−1 ∨ cm)

Finally, since each variable in CP format can only take a single value, the following equiva-
lences are included in the formula:

vi di1 ≡ ¬vi di2 ∧ · · · ∧ ¬vi diu
vi di2 ≡ ¬vi di1 ∧ · · · ∧ ¬vi diu
vi di3 ≡ ¬vi di1 ∧ · · · ∧ ¬vi diu

...

vi diu ≡ ¬vi di1 ∧ · · · ∧ ¬vi diu−1

Note that, for readability, the literals that were represented as variables vi dij are here re-
placed with literals p1, p2, . . . , pn−1, pn, equal to those literals used in Step 2 above.

In this way, the conjunctions of formulae created above represent the rules that were
originally in CP format.

Conversion of the ASP formulation. In the second stage of the proof, the ASP formulation
is converted to propositional logic using the approach of Lin and Zhao [57]. Note that the
ASP formulation does not include any loops. As mentioned above unique variables were
created for minterms.

In the second step of the CP-ASP transformation, the following ASP rules were created:

ct ← p1, p2, . . . , pn−1, pn.

According to Lin and Zhao, these are converted into the following form.

ct ≡ (p1 ∧ p2 ∧ · · · ∧ pn−1 ∧ pn)

In the third step of the CP-ASP transformation, the following constraints were created:

← not cl, not cl+1, . . . , not cm−1, not cm.

These constraints will be converted according to Lin and Zhao into the form below.

¬(¬cl ∧ ¬cl+1 ∧ · · · ∧ ¬cm−1 ∧ ¬cm)

Using the De Morgan law, this is equivalent to the following.

(cl ∨ cl+1 ∨ · · · ∨ cm−1 ∨ cm)
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In the forth step of the transformation, the following choice rules are added to assure
that each CP variable can only have a single value:

1{vi di1 ; vi di2 ; . . . ; vi diu}1.

This constraint can be alternatively represented with the following series of rules according
to [16]:

vi di1← not vi di2 , . . . , not vi diu

vi di2← not vi di1 , . . . , not vi diu

vi di3← not vi di1 , . . . , not vi diu

...

vi diu← not vi di1 , . . . , not vi diu−1

In this manner, every literal in the program has been used in the rule heads. Since literals
that represent the minterms (which start with the prefix c) are never used in the rule bodies
of these rules, still no loops are present in the program after this step of the transformation.

The rules representing the constraints above can be converted to the following formulae
in propositional logic according to Lin and Zhao:

vi di1 ≡ ¬vi di2 ∧ · · · ∧ ¬vi diu
vi di2 ≡ ¬vi di1 ∧ · · · ∧ ¬vi diu
vi di3 ≡ ¬vi di1 ∧ · · · ∧ ¬vi diu

...

vi diu ≡ ¬vi di1 ∧ · · · ∧ ¬vi diu−1

When the formulae that were created using Tseitin transformation and according to the
approach of Lin and Zhao are compared, one will see that they are equivalent. �

5 Applications

Other than the basic applications like the validation of a given production order or of the
complete product documentation, e.g. the validation of the configuration rule base, there
are also a series of applications that are relevant to the production planning and warehouse
management. In the following, details about applications and their implementation in ASP
are given.

The primary purpose of configuration constraints is, to determine what a feasible con-
figuration is. Hence validating a given configuration against a set of rules is the first possible
usage for the ASP encoding of the configuration instance.

To validate a particular order configuration, the contents of this order are represented as
rules without bodies, namely as facts. Subsequently, this rule set is added to the answer set
program that represents the product documentation. Enumeration of answer sets of this new
program yields valid configurations or no answers if the configuration is inconsistent.

An order can be formalized with a set of literals denoting the key value pairs of the form
pij = vi dij :

o = {pij |i ∈ {1, 2, . . . , |V|}, j ∈ {1, 2, . . . , |Di|}}
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The ASP program representing the product documentation can then be complemented
by adding each of these literals in the order set as single facts. The formalization of an order
with a number of z facts can be represented as below:

p1. p2. . . . pz−1. pz.

For example, all Diesel car models for Switzerland have the configuration

var5=SUIS var4=DIESEL

which is represented in the ASP formulation by the following atoms.

var5_SUIS var4_DIESEL

The ASP program comprising the transformed product documentation and such facts
can be checked now for satisfiability. Note that not every variable in V has to be set through a
literal in the order. An order can leave some of the variables unset. In this case, the answer set
computed by the solver can be interpreted as one possible feasible solution with assignments
for unset variables.

The applications described in the following go beyond validating a single configuration:
the following encodings make analyses of all potential configurations at once using the
power of modern computational logic techniques and ASP solvers.

5.1 Diagnosis (APP1)

In the case of an incorrect car order configuration or an invalid product documentation, it
is usually interesting to know which rules or rule parts have caused the test to fail. Since
there are multiple ways to make an invalid configuration valid again, it is also desirable to
find the minimum number of changes in variable settings in order to do so. To achieve this,
the answer set program is complemented with additional variables denoting abnormality
according to the theory of diagnosis from the first principles by Reiter.

In Step 3 of the transformation from CP format to ASP, constraints for the minterms of
each rule were defined. Additionally to the negative literals denoting the minterms, here a
variable to each constraint to symbolize abnormality of the constraint.

← not cl, not cl+1, . . . , not cm−1, not cm, ab(i, 1).

Applied to the example above, some of the constraints generated this way are as follows.

← not c208, not c209, . . . , not c371, ab(1, 1).

← not c376, not c377, . . . , not c1425, ab(2, 1).

...

The predicate ab has two arguments. The first argument holds the running number for
the rule that contains the minterms, denoted by the negative literals not cl, · · · , not cm.
The second argument gives the weight of the abnormality. Uniform weight of cost 1 was
chosen for all rules, but alternatively the number of different variables in each minterm or a
priority value for the importance of a rule for the production could be chosen as the value of
the second argument.
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In ASP, constraints can only be defined to confine atoms that are populated by variable
binding as it is specified in the program. In order to be able to use the ab predicate in the
constraints, the following ASP rule generates all possible combinations of abnormalities.

{ab(1, 1); ab(2, 1); . . . ; ab(n, 1)}.

Since the Renault benchmark contains 113 rules, the guess obtained this way is as fol-
lows:

{ab(1, 1); ab(2, 1); . . . ; ab(113, 1)}.

Having no limiting numbers on each side of the rule, any subset of the literals ab(1, 1),
. . ., ab(n, 1) can be guessed as true. This modification ensures that the new answer set pro-
gram is always satisfiable, since the constraints that fired previously can now be deactivated
thanks to their ab(·, ·) literals.

As a result, a number of abnormality literals appears in the answer sets instead of the
mere output UNSATISFIABLE for inconsistent configuration rule sets. As the next step,
a minimization statement eliminates all but the answer sets with the minimal number of
violated rules.

Many answer set solvers allows the use of #maximize and #minimize expressions
and the assignment of weights to literals. For each answer set, a sum is going to be cal-
culated adding up the weights of its literals. The answer set that provides the optimum
can be then found according to the answer set weights and the choice between the expres-
sions #maximize and #minimize. The following statement restricts solutions to mini-
mal ones.

#minimize{C@1, X : ab(X,C)}.

Here, the argument C denotes the cost to minimize, i.e. the sum of weights of all abnor-
mality literals. The number 1 indicates the optimization level of the rule which is the same
for all abnormalities (it is possible to prioritize certain abnormalities this way).

Using this optimization constraint, the cost of the optimal answer sets corresponds with
the number of rules violated, since cost 1 was specified as the weight of each rule.

Since the Renault benchmark is consistent, applying the ASP formulation yields the
empty set. Accordingly no constraints need to be deactivated to obtain a consistent product
documentation. A case yielding more interesting results is the usage of this formulation
relative to a preselected set of options which is discussed in Section 5.4.

5.2 Options that are used in every/no configuration (APP2)

Many ASP solvers can compute brave or cautious consequences of a logic program. Brave
consequences of a logic program are the atoms that are true in some answer sets, whereas
the cautious consequences are the atoms that are true in every answer set of that program.
In other words, the intersection of all answer sets of a program represent the cautious con-
sequences, whereas the union of all answer sets of it represent the brave consequences.

Given these definitions, it is obvious that the cautious consequences of the logic program
represent exactly the set of options that are used in every car variant. This method identifies
the following seven options to be present in every constructible car variant in the Renault
benchmark:
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var71=FSTPO var50=SASURV var17=SPRTEL var24=SSARCE
var10=SANCOA var8=CPLN var36=PTCAV

The concrete output of the Clingo ASP solver for this application is as follows.
var71_FSTPO var50_SASURV var17_SPRTEL var24_SSARCE
var10_SANCOA var8_CPLN var36_PTCAV

There are different ways to find the options that are not used in any car variant. One of
them would be computing the brave consequences of the program and then finding out the
difference of the set of all atoms representing the configuration options to them. The result-
ing set would be exactly the options that are not used in any constructible car variant. Using
Clingo and the logic program as it is (see Section 6 for details on the experimental setup
used), it took 2 hours 36 minutes to compute the brave consequences. The result included
not only the atoms representing the options but also the atoms that were standing for the
minterms of each rule in the CP format. Thus, the result set is confined to the first using
the #show declarative. The #show declarative allows to selectively include the atoms of a
certain predicate in the resulting answer sets. After complementing the logic program with
#show declaratives for atoms representing the options, it takes Clingo around 10 seconds
to compute the brave consequences of the program.

Another way to find these options is first to define new variables for the (default) nega-
tions of every option variable, and then to compute the cautious consequences of the program
that is now complemented with the rules for variable negations. An example definition for a
variable negation is given below:

nvar1 B64← not var1 B64 .

Using these negations and cautious reasoning, the concrete output of the Clingo ASP solver
is as follows.

nvar8_CPLG nvar10_temp nvar17_temp nvar24_temp
nvar36_temp nvar50_temp nvar55_CRIT2RHENF
nvar71_temp nvar80_CRIT4X25KI nvar100_CRIT731

From this, the following options that are never used in any constructible car variant can be
obtained:

var8=CPLG var10=temp var17=temp var24=temp
var36=temp var50=temp var55=CRIT2RHENF
var71=temp var80=CRIT4X25KI var100=CRIT731

Many of these options seem to be false positives, as the word “temp” indicates that these
option variations represent some kind of temporary place holders.

The discovery of options that are not used in any product configuration will enable
savings in production warehouse management, inventory management, production manage-
ment, and labor costs related to the parts affected by the identified options, since these parts
can now be released from the production warehouse, for example to supply them as spare
parts. On the other hand, when the options were really options that are needed for potential
product configurations (e.g. in case of false positives), their discovery will prevent possible
loss of opportunity, when customers were interested in products including these options.

5.3 Groups of options that are used always together (APP3)

Based on the encoding above, additional information about the configuration space can be
obtained: pairs and groups of options that are always used together, or are always absent
together from configurations.
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To obtain such information, the previous formulation is extended by the following rules.

pairvi dij
,vk dkl

← vi dij , vk dkl
.

pairvi dij
,vk dkl

← not vi dij , not vk dkl
.

for i, k ∈ {1, . . . , |V|},
j ∈ {1, . . . , |Di|}, and l ∈ {1, . . . , |Dk|}

This defines a new atom pairvi dij
,vk dkl

that is true in two cases: if variable vi has value
dij and variable vk has value dkl

, and if both variables do not have these values. Essentially
this new atom is true if the variable/value combinations have equivalent truth values (both
true or both false) in a solution.

By performing cautious reasoning on the resulting ASP program all pairs of variable/-
value combinations that are always ‘synchronized’ in configurations are obtained: either
both variables have the indicated values, or both do not have these values. These observa-
tions, translated back into the domain of car manufacturing, provide sets of components (or
other variable settings) that are always either used together in a car, or not at all.

From pairs of components that are used together, groups of such components can be
computed: if component A and B are always used together, and components B and C are
always used together, A and C are also always used together (mathematically the compo-
nents form an equivalence class).

Performing this cautious computation yields 29 equivalence relations of components
that are always used together or not at all. Two of these groups are trivial groups: the group of
items that is used in no configuration, and the group of items that is used in all configurations.

Examples for nontrivial groups of items that are always used together or not at all, are
the following three groups.

{var3=ME, var100=CRIT764, var75=MOCY02}
{var5=SUIS, var82=NMAS04}
{var5=ALLE, var82=NMAS03, var72=PARALL}

As an example, the first group is indicated in the cautious answer set by the following atoms.
pair_var3_ME_var75_MOCY02 pair_var3_ME_var100_CRIT764
pair_var75_MOCY02_var3_ME pair_var75_MOCY02_var100_CRIT764
pair_var100_CRIT764_var3_ME pair_var100_CRIT764_var75_MOCY02

In practice, such information can be valuable for arranging storage space to minimize
transport distances and logistic effort during assembly. Another use of this information
would be the consideration of the options in such a group for the unification to a single
option, since they are provably used always together. This way, the efficiency of the config-
uration process would be increased.

5.4 Queries relative to a preselected set of options (APP4)

By restricting the configuration space, for example enforcing usage of a certain option, or
forbidding usage of another option, application scenarios APP1–APP3 can be applied rela-
tive to a hypothetical change of the configuration space.

For example, it can be computed which options are mandatory or obsolete (APP1) under
the assumption that a certain option should be used, or is no longer available.

Such reasoning can be achieved by adding constraints to the ASP encodings of the above
applications. These constraints require certain variable/value combinations or forbid them.
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Table 1 Results for the Validation of the Product Documentation.

Application APP1 APP2 APP2 APP2 APP3 APP4 APP4

Reasoning Mode Diagnosis Brave Cautious +negation Cautious pairs +var5 SUIS –var4 DIESEL

Time (sec) 0.4 10.2 5.4 11.4 55.9 10.4 6.4

Memory (GB) 1.5 1.5 1.5 1.5 2.0 2.0 2.0

To require that variable i ∈ {1, . . . , |V|} obtains value j ∈ {1, . . . , |Di|}, the only
required change to the respective application is to add the following constraint.

← not vi dij .

Intuitively this declares solutions where vi dij is false as invalid, or in other words all answer
sets satisfy the condition that they represent vi = dij .

To require that variable vi does not have value dij , it suffices to add the following
constraint.

← vi dij .

Moreover multiple variable/value combinations can be restricted like this at the same
time by adding the respective constraints.

In the Renault rule set, if constraint← not var5 SUIS is added, this requires the vari-
ation var5 SUIS to be true. Cautious querying then yields a set of equivalence relations
different from the original equivalence relations, i.e., the set of options used together or not
at all in all potential configurations for car models in Switzerland.

In the result of this query ‘relative to Switzerland’ 18 of the original equivalence classes
are obtained, for example {var3=ME, var100=CRIT764, var75=MOCY02} is still part of
the solution. In addition, the following previously non-existing equivalence relation become
apparent.
{var1=E64, var42=SSPHAN}

Moreover all other country-specific equivalences (e.g., var5=ALLE, var82=NMAS03, and
var72=PARALL) become part of the ‘always false’ set of parameters.

In total, when restricting to var5 SUIS, 17 configuration parameters become always true
and 75 parameters become always false relative to the unrestricted set of product variations.

The configuration space can be restricted further, for example by ruling out Diesel en-
gine models, using the following constraint.

← var4 DIESEL.

As a result, further novel synchronized configuration parameters become apparent. In the
above example, the following new equivalence classes can be retrieved from the answer set
(a concrete example for atoms of such an answer set is given in Section 5.3).

{var3=MM, var100=CRIT622}
{var3=MT, var100=CRIT624, var96=CRIT070CV}

These are two equivalence classes where it becomes visible that choice of var3 completely
determines choice of var100 and this is not the case in Diesel or non-Switzerland variations.
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Moreover, an additional 41 configuration parameters become permanently false and two
parameters (var26=SANCL and var4 ESS) become permanently true in Switzerland without
Diesel.

This ASP reasoning mode together with pair-finding rules provides useful information
for optimizing configuration and manufacture, and using the method described here, this
information can be obtained from the product configuration rule set in a non-complicated
way. For example, through an analysis of the remaining options based on the sales market
(i.e. the country option is preselected), it can be examined if every product line the producer
offers can also be produced for a certain country.

6 Results and Discussion

Based on the above encodings and based on the industrial-scale Renault benchmark [3]
experiments were conducted to verify the feasibility of the approach. A laptop system with
Intel R©CoreTMi7-2760QM processor with 2.4 GHz and 8 GB main memory was used as
hardware, for solving Answer Set Programs the Clingo 4.5.01 was used. Clingo is a compact
program that combines the instantiator program Gringo [32] and the solver Clasp [33,30]
and is currently the best-performing tool in the majority of benchmarks [34]. The default
configuration of Clingo was used, which means that Clingo performs automatic selection
of the (predicted) best solver parameter portfolio. Manual tuning yielded slightly different
and mostly worse performance, so these experiments are not reported. Clingo was used in
single-threaded mode.

The results of experiments with all above mentioned application scenarios is summa-
rized in Table 1. In particular the solving time and memory consumption is shown for all
experiments that are performed. Columns of the table have been described in the respective
application section (Sections 5.1–5.4).

The results are encouraging, even though the underlying problems are NP-complete:
most application scenarios require a time around or below 10 seconds for reasoning. As a
consequence such reasoning can be integrated into interactive tools for editing product doc-
umentations. In particular querying with respect to a selection of variations (APP4) requires
a moderate amount of time.

Memory consumption is similar among APP1–APP2 (1.5 GB) while a bit more memory
is required in APP3–APP4. This can be explained by the pair-detecting rules in the program
which are only required in APP3–APP4.

In detail, column APP1 of Table 1 shows resources required for computing a diagnosis
over the product documentation, i.e., finding which rules are causing inconsistency of the
documentation.2 Column APP2/brave pertains to identifying options that are used in at least
one constructible car variant, APP2/cautious is about computing those options that are used
in every constructible car variant, and APP2/+negation shows results for cautious querying
with negation, which means to find options that are absent in all constructible car variants.
The most time-consuming computation is clearly application APP3 which is the search for
pairs of options that are related in the sense that in all constructible cars, either both options
are present, or both are absent. For selective querying APP4 the computational resources
for computing the examples shown in Section 5.4 are given: column APP4/+var5 SUIS is
the search for pairs of options that are related (as in APP3) in all constructible car variants

1 http://potassco.sourceforge.net/
2 As the benchmark is consistent, the result is empty.
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that are intended for Switzerland, and APP4/-var4 DIESEL additionally constraints this
search to car variants that are not Diesel cars.

With APP4, the more the configuration space is restricted by requiring or forbidding
certain options, the faster reasoning becomes. This easier solving with more constrained
space is a well-known phenomenon in ASP, SAT, and constraint solving [75].

7 Conclusion and Future Directions

In this work, Answer Set Programming was applied to an industrial-scale automotive prod-
uct configuration rule set. The configuration rule set was formalized as a propositional logic
formula and then transformed into an ASP encoding. Using this encoding, four applica-
tions within automotive product configuration were defined. The investigation of that kind
of questions has the potential to increase productivity and decrease costs by minimizing stor-
age and transportation distances in logistics of producing highly configurable products. For
example, the discovery of options that are not used in any product configuration will enable
savings in management, storage, inventory, and labor costs, or when the options were really
options that ought to be used (in case of false positives), their discovery will have positive
consequences like the prevention of possible loss of opportunity.

In the first application (APP1), the theory of diagnosis from first principles by Reiter
was applied to give explanations to possible inconsistencies in the configuration rule set.
Combined with the minimization mechanism of ASP more relevant repair suggestions can
be obtained. In the second application (APP2), the mandatory or obsolete options that ap-
pear in every (or respectively no) car variants are computed. The third application (APP3)
brings out which pairs or groups of options must be used or must be absent together in
all constructible car variants. Finally, the last application (APP4) computes mandatory or
obsolete options under the assumption that a certain set of options should be used or no
longer available. Empirical experiments showed that ASP as an approach of non-monotonic
reasoning can be used in these applications in a feasible and efficient way.

The presented work in this paper could be extended in two different directions. Meth-
ods of probabilistic inductive logic programming [61] can be used to determine probability
distribution over answer sets of a given answer set program. Through analysis of this in-
formation, one can automatically discover product line candidates from a set of product
configuration rules. Another future direction would be to extend the approach in this paper
with techniques allowing the use of non-Boolean variables with ASP. Hybrid solvers like
Clingcon, that combine ASP with CSP are already available. Using such capabilities, the
analysis of the configuration options can be extended with optimization based on criteria
with real values.
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96. Walter, R., Felfernig, A., Küchlin, W.: Constraint-based and sat-based diagnosis of automotive config-
uration problems. Journal of Intelligent Information Systems pp. 1–32 (2016)
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