
The Hexlite Solver

Lightweight and Efficient Evaluation of HEX Programs

Peter Schüller

Technische Universität Wien
Institut für Logic and Computation
Knowledge-based Systems Group

ps@kr.tuwien.ac.at

Abstract. hexlite is a lightweight solver for the hex formalism which integrates Answer Set Pro-
gramming (ASP) with external computations. The main goal of hexlite is efficiency and simplicity,
both in implementation as well as in installation of the system. We define the Pragmatic hex Fragment
which permits to partition external computations into two kinds: those that can be evaluated during the
program instantiation phase, and those that need to be evaluated during the answer set search phase.
hexlite is written in python and suitable for evaluating this fragment with external computations
that are realized in python. Most performance-critical tasks are delegated to the python module of
clingo. We demonstrate that the Pragmatic hex Fragment is sufficient for many use cases and that it
permits hexlite to have superior performance compared to the dlvhex system in relevant application
scenarios.

1 Introduction

The hex formalism [8] facilitates the combination of logic programming and external computations in other
programming paradigms, and facilitates the integration of logical reasoning with diverse other reasoning
methods such as motion planning [20], description logics [14], or sub-symbolic reasoning [17].

Differently from externals in gringo and the python interface of clingo, the hex formalism provides
uniform and generic syntax and semantics for external computations that influence (a) the instantiation of
the program (by performing value invention), and (b) the solving process (by computing truth values relative
to interpretations).

Computing hex semantics requires the evaluation of external computations both during grounding and
during search, in an interleaved fashion. The main solver implementation for the hex formalism is the
dlvhex system [13]. While dlvhex implements the full hex language, it performs a lot of analysis and
preprocessing to be able to deal with all eventualities of combinations of external computations, which
makes it unnecessarily slow in several relevant application scenarios.

In order to obtain performance when evaluating hex programs, we here present a new hex solver that
is lightweight and efficient, at the cost of handling only a fragment of hex, which is sufficient for many
applications.

In this work, we make the following contributions.

• We define the Pragmatic hex Fragment (PHF) that permits to separate external computations into those
that can be evaluated completely during instantiation and those that can be evaluated completely during
search. We show several application scenarios where the PHF is sufficient.
• We describe and provide the hexlite solver that provides lightweight and efficient evaluation machinery
for the PHF. The solver is implemented in python and uses the clingo python API as a backend for
ASP grounding and search. hexlite rewrites both classes of external atoms in different ways before passing
the rules to clingo for evaluation. As a main benefit of this architecture, hexlite supports the full ASP
input language of clingo without the need for dedicated code that supports weak constraints, choice rules,
aggregates, expansion terms, and builtin arithmetics.
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• We experimentally compare the hexlite solver with dlvhex on two application scenarios that gave rise
to the development of hexlite: cost-based abduction [30] and RDF processing [18]. Our experiments show,
that hexlite performs better than dlvhex in these applications. As hexlite uses the same python API
as dlvhex, we use the same plugin with both solvers, which makes the comparison very realistic.

hexlite can be installed via conda or pip and is available as open source.1

2 Preliminaries

We give syntax and semantics of the HEX formalism [8, 16] which generalizes logic programs under answer
set semantics [24] with external computations.

2.1 HEX Syntax

Let C, X , and G be mutually disjoint sets whose elements are called constant names, variable names, and
external predicate names, respectively. Usually, elements from X and C are denoted with first letter in upper
case and lower case, respectively; while elements from G are prefixed with ‘ & ’. Elements from C ∪ X are
called terms. An (ordinary) atom is a tuple p(Y1, . . . , Yn) where p∈C is a predicate name and Y1, . . . , Yn are
terms and n ≥ 0 is the arity of the atom. An atom is ground if all its terms are constants. An external atom
is of the form &g[Y1, . . . , Yn](X1, . . . , Xm), where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms, called
input and output lists, respectively, and &g ∈ G is an external predicate name. We assume that input and
output lists have fixed lengths in(&g) = n and out(&g) = m. With each term Yi in the input list, 1 ≤ i ≤ n,
we associate a type ti ∈ {cons} ∪ N. We call the term constant input iff ti = cons, otherwise we call it
predicate input of arity ti.

A rule r is of the form α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm with m, k ≥ 0 where all αi are
atoms and all βj are either atoms or external atoms. We let H(r) = {α1, . . . , αk} and B(r) = B+(r)∪B−(r),
where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. A rule r is a constraint if H(r) = ∅; a fact if
B(r) = ∅ and H(r) 6= ∅; and nondisjunctive if |H(r)| ≤ 1. We call r ordinary if it contains only ordinary
atoms.

A HEX program is a finite set P of rules. We call a program P ordinary (resp., nondisjunctive) if all
its rules are ordinary (resp., nondisjunctive). Note that we here assume that programs have no higher-order
atoms (i.e., atoms of the form Y0(Y1, . . . , Yn) where Y0 ∈X ) because HEX-programs with higher-order atoms
can easily be rewritten to HEX-programs without higher-order atoms [8].

A comprehensive introduction to HEX is given in [18].

2.2 Semantics

Given a rule r, the grounding grnd(r) of r is obtained by systematically replacing all variables with constants
from C. Given a HEX-program P , the Herbrand base HBP of P is the set of all possible ground versions
of atoms and external atoms occurring in P obtained by replacing variables with constants from C. The
grounding grnd(P ) of P is given by grnd(P ) =

⋃
r∈P grnd(r). Importantly, the set of constants C that is

used for grounding a program is only partially given by the program itself: in hex, external computations
may introduce new constants that are relevant for the semantics of the program.

Extensional Semantics [8,16] of external atoms are defined as follows: we associate a (n+1)-ary extensional
evaluation function F&g with every external predicate name &g ∈ G. Given an interpretation I ⊆ HBP and
a ground input tuple (x1, . . . , xm), F&g(I, y1, . . . , yn) returns a set of ground output tuples (x1, . . . , xm). The
external computation is restricted to depend (a) for contant inputs, i.e., ti = cons, only on the constant
value of yi; and (b) for predicate inputs, i.e., ti ∈ N, only on the extension of predicate yi of arity ti in I.2

1 https://github.com/hexhex/hexlite
2 Formally, this is the set {yi(v1, . . . , vti) ∈ I}.
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An interpretation I ⊆ HBP is a model of an atom a, denoted I |= a if a is an ordinary atom and a ∈ I.
I is a model of a ground external atom a = &g [y1, . . . , yn](x1, . . . , xm) if (x1, . . . , xm) ∈ F&g(I, y1, . . . , yn).
Given a ground rule r, I |= H(r) if I |= a for some a ∈ H(r); I |= B(r) if I |= a for all a ∈ B+(r) and
I 6|= a for all a ∈ B−(r); and I |= r if I |= H(r) whenever I |= B(r). Given a hex-program P , I |= P if
I |= r for all r ∈ grnd(P ); the FLP-reduct [21] of P with respect to I ⊆ HBP , denoted fP I , is the set of all
r ∈ grnd(P ) such that I |= B(r); I ⊆ HBP is an answer set of P if I is a minimal model of fP I , and we
denote by AS(P ) the set of all answer sets of P .

3 The Pragmatic HEX Fragment (PHF)

We next define a fragment of hex that permits to separate external computations into two classes: grounding-
relevant and solving-relevant.

Definition 1. A hex-program P is in the Pragmatic hex Fragment (PHF) iff each external atom of the
form &g[Y1, . . . , Yn](X1, . . . , Xm) with type signature t1, . . . , tn satisfies one of the following conditions:
(G) ti = cons for all i, 1≤ i≤n; or
(S) m = 0 and there is at least one type ti, 1≤ i≤n, such that ti ∈ N.

Type (G). External atoms that satisfy condition (G) can be evaluated during instantiation of program P
because their computation does not depend on I. These external computations can perform value invention:
they can produce constants in the output tuple X1, . . . , Xm that do not exist in P . In particular, output
terms can recursively define input terms of the same external atom.

Example 1. We can use an external atom of the form &rdf [U ](S, P,O) of type (G) to accesses a RDF [26]
triple stores [18]. The function F&rdf (I,U ) returns all tuples (S, P,O) that are obtained from the RDF graph
accessible at URI U . Intuitively, this external computation imports the RDF graph into the hex program
and provides all its constants to the instantiation process. The computation does not depend on I and returns
arbitrary strings (value invention).

Type (S). External atoms that satisfy condition (S) have an empty output tuple and can therefore not
produce any output apart from their own truth value. This makes it possible to instantiate rules that contain
such external atoms, without performing the associated external computation; the external computation
needs to be performed only during the answer set search phase, when the interpretation I is available.

Example 2. We can use external atoms of the form &transitive[p]() of type (S), with t1 = 2 the arity of
predicate p, to verify whether p/2 is transitive in the interpretation [30]. The function F&transitive(I, p)
returns the empty tuple if the extension of p in I is a transitive relation. Otherwise, it returns no tuple.

External atoms of type (S) have the possibility to create nogoods that relate the truth value of the ground
external atom with parts of I that are relevant for computing that truth value. This feature, which also
exists in dlvhex, can be used for increasing evaluation performance by guiding the solver towards answer
set candidates that are compatible with external computation results.

3.1 Properties

Clearly, the two classes (G) and (S) of external atoms are mutually exclusive. Those external atoms of type
(G) that have no output terms (i.e., m = 0) could be evaluated during the solving process because their
evaluation is not necessary for instantiating the ground program. However, we found it useful to evaluate
(and therefore eliminate) as many external atoms as possible already during program instantiation.

Moreover, there are external atoms that fall neither into class (G) nor into class (S), for example an
external atom &sum[pred ](X ) that has one predicate input pred of arity 1 and realizes a summation aggregate
with extensional evaluation function F&sum(I, pred) := {(X)} where X = Σ{x | p(x) ∈ I}.

External atoms of type (G) can be evaluated (and eliminated) during instantiation of the program as
shown in the following proposition.
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Proposition 1. Given a ground hex-program P in PHF, an equivalent program P ′ can be produced by
(1) omitting rules that contain an external atom a of type (G) where (i) a is in a positive literal and ∅ 6|= a;
or (ii) a is in a negative literal and ∅ |= a; and (2) omitting all other external atoms of type (G).

Proof (sketch). A ground external atom a of type (G) has only constant input, therefore I |= a is independent
from the value of I. Hence, rules where (1) applies can never obtain a satisfied body due to a while rules
where (2) applies can never obtain a non-satisfied body due to a.

External atoms of type (S) can be handled the same way as in dlvhex [8, 13], therefore we here do not
provide formal results about them.3

External atoms outside the PHF fragment can be processed with Liberal Safety [10]: it permits automatic
verification of finite instantiation of a hex program in the presence of cyclic dependencies among external
atoms that perform value invention, depend on the answer set candidate, and have certain (semantic) prop-
erties. Opposed to the methodology of Liberal Safety, hexlite delegates finiteness of instantiation to the
programmer (as also done, e.g., by gringo).

3.2 Amenable Application Scenarios

External computations of type (S) can pass nogoods to the solver that describe how their truth value depends
on the interpretation.

Constraint Answer Set Programming (CASP) [27] has been realized in hex [29] using one external
atom &check of type (S). Application scenarios in [29] use external atoms of type (G) for SQL querying:
&sql [Query ](AnswerTuple), where Query can be a fixed string or defined using external atoms. High-level
planning for robotics has been interleaved with low-level motion planning using hex [20], where external
atoms for motion planning are either of type (S) or of type (G) and there is no value invention. hex-programs
with existential quantification (hex∃) [9] as well as hex-programs with function symbols use only external
atoms of type (G) to perform tasks related to Skolemization, similar to what is presented in Section 5.1.
The MCS-IE system for explaining inconsistency in Multi-Context Systems [4] is implemented in hex and
uses only external atoms of type (S). Two further application scenarios are abduction and RDF processing,
shown in detail in Sections 5.1 and 5.2.

4 Hexlite Solver Design and Architecture

Principles. The design of hexlite followed several guiding principles.

– Delegation: delegate as much as possible to the backend solver (currently clingo).
– Separation: deal with external atoms either during grounding or during solving in order to avoid multiple

grounding passes.
– Programmer Responsibility: delegate the responsibility for finite instantiation to the programmer (as in

gringo).

Delegation reduces computational overhead and duplication of code that already exists in the ASP back-
end. As the main consequence of this principle, hexlite performs no safety check and no syntax check,
not even thorough parsing of the input. Instead, a shallow representation of the input program is created.
This representation is sufficient for rewriting rules and external atoms for subsequent evaluation. As a conse-
quence of Delegation, unsafe variables are detected only by gringo because safety checking is not required
for hexlite rewriting. A second consequence of Delegation is, that hexlite has no internal representation
of the current answer set candidate; instead, the clasp python API is used to directly access the (partial)
model within clasp. Moreover, optimization is handled transparently within clasp.

3 dlvhex replaces them with an ordinary replacement atom, guesses truth of replacement atoms with extra rules,
and accepts only answer set candidates I where guessed truth values correspond with external computations wrt.
I, see Section 4.
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Fig. 1. Architecture of the hexlite system and its interaction with the clingo Python library and plugins for
external computations.

Separation is the basis for defining the PHF and contributes to the small implementation of hexlite,
because evaluation follows the common structure of ASP solvers with external atoms that are relevant either
for grounding or for solving. (Currently, hexlite is implemented using 3,300 lines of python code, which
includes the shallow parser, FLP checker, and code comments.) A hex program can be split into Evaluation
Units, i.e., non-ground program modules that never mutually depend on one another [8]. While dlvhex
interleaves grounding and search over multiple Evaluation Units, hexlite always uses a single Evaluation
Unit.

Programmer Responsibility is a principle from gringo: the burden of ensuring a finite instantiation is put
on the programmer and not verified by preprocessing. This is the opposite of the philosophy followed in the
dlvhex solver where various safety notions such as Domain Expansion Safety and Liberal Domain Expansion
Safety [11] are defined and also checked by the solver, depending on properties of external computations. The
upside of not checking this in the solver is decreased preprocessing effort, the downside is that hexlite (just
like gringo) will not complain about the program ‘p(0)← . p(s(X))← p(X).’ but starts to instantiate it and
will exhaust the available memory due to its infinite instantiation. In hex programs, external computations
can cause infinite instantiation, but the programmer of external computations might take specific measures
to prevent infinite instantiation (as shown in Section 5.1). Therefore, delegating responsibility to the user
instead of performing costly verifications can be an advantage.

Architecture. Figure 1 shows the architecture of hexlite. The input program P is analyzed with a shallow
parser, followed by the rewriter module that rewrites only those parts of rules that contain external atoms.
The rewriter accesses external computations for obtaining their type and creates the following gringo-
compatible rules for each rule r∈P .

(i) a rule r′ where each external atom a of the form &g[Y1,..., Yn](X1,..., Xm)
(a) is replaced by a gringo external of the form (X1,...,Xm) = @g(Y1,...,Yn) if a is of type (G);
(b) is replaced by a replacement atom of the form e&g(Y1,..., Yn) if a is of type (S); and4

4 In that case m = 0 so the replacement atom does not include X1, . . . , Xm.
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(ii) for each replacement atom created in (b) above a rule r′′ of the form

e&g(Y1, . . . , Yn) ∨ e&g(Y1, . . . , Yn)←B′

where B′ = {β ∈ B(r) |β shares variables with Y1, . . . , Yn}.
(dlvhex uses a similar rewriting, see [15, 19].) After rewriting, gringo is used for instantiating the rewrit-
ten program with a python context that evalutes external computations of the form (X1, . . . , Xm) =
@g(Y1, . . . , Yn) by assigning the tuple (X1, . . . , Xm) all values returned by the external computation. The
resulting ordinary ground program is passed to a clasp instance that has been prepared with (i) a custom
python propagator,5 (ii) a ground program observer that collects the ground program for usage in the FLP
checker, and (iii) an on model callback (not shown in the figure) which calls the FLP checker and, after a
successful check, outputs the answer set without auxiliary elements.

The custom python propagator compares truth values of replacement atoms with the results of their
corresponding external computations. For failed checks, nogoods are created to prevent future failed checks.
Moreover, user-defined nogoods can be provided by plugins to further guide the search (see also the descrip-
tion of external atoms in Sections 5.1 and 5.2). The FLP checker is necessary for hex programs with positive
loops over external atoms and prevents answer sets with self-founded truth values, see also [21]. It also
ensures that non-monotonic aggregates are evaluated correctly (clingo does not support FLP semantics).6

hexlite uses the same python API as dlvhex, therefore migrating plugins from one solver to the other
is easy. None of the benchmarks we used in evaluations has positive loops over external atoms of type (S),
therefore we deactivated the FLP checker for all experiments (both for dlvhex and for hexlite).

5 Experimental Evaluation

For experimental evaluation of hexlite, we tried it out with two application domains: variants of cost-based
abduction [30] and the RDF plugin [18].

We choose these domains because they both contain both types of external atoms, and because they were
part of the inspiration for developing hexlite.

5.1 Cost-based Abduction Benchmark

Cost-based abduction consists of 50 instances over the accel natural language story understanding bench-
mark [28]. The full benchmark is available online.7,8 accel uses two external predicates: &invent for flexible
Skolemization, and &transitive as described in Example 2 for ensuring transitivity of a guessed relation over
many elements.

External predicate &invent is used for ensuring finite instantiation in the presence of existential variables
in rule heads.9 Given a rule R with an existential variable B in the head and universal variables A1, . . . , Ak

in the body, instead of replacing B with Skolem term s(A1,..., Ak) we add &invent[R, cB , A1,..., Ak](B) to
the rule body and define F&invent such that a finite set of values for B is invented, independent from cycles
in the program. For our evaluation, we used two variants of this benchmark:

SK/P1 variant. Value invention is blocked if at least one parent term is invented: F&inventP1 (I,R, V,A1, . . . , Ak)
returns the tuple ( s(R, V,A1, . . . , Ak) ) if no Ai, 1≤ i≤ k is of the form s(· · · ), otherwise it returns no tuple.

5 A propagator is a program module that interfaces with the search process of clasp and can (a) infer truth values
and (b) add ground clauses based on a partial model.

6 The FLP check implemented in hexlite is described in Proposition 1 in [8]. The FLP check can be deactivated
if it is not required (this is another example of Programmer Responsibility). The custom python propagator is
re-used in the FLP checker.

7 https://bitbucket.org/knowlp/asp-fo-abduction
8 To permit a fairer comparison, we used only objective functions card and coh (dlvhex is incompatible with

objective function wa) and we removed all facts of the form comment(. . .). which served only an informational
purpose (dlvhex is significantly slower if these facts are included).

9 This generalizes the termination mechanism for reasoning as it was implemented in the original accel reasoner [28].
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SK/G1 variant. Value invention is blocked if at least one parent term was invented by the same ground
external predicate: F&inventG1 (I,R, V,A1, . . . , Ak) returns the tuple ( s(R, V,A1, . . . , Ak) ) if no Ai, 1≤ i≤ k
has a sub-term of the form s(R, V, · · · ), otherwise it returns no tuple.

Intuitively, SK/P1 invents only values that have non-invented parents, and SK/G1 invents only a single
generation of values in each rule. This method of ensuring finite instantiation is orthogonal to guarding
domains predicates that ensure a finite chase in Datalog with existential quantifiers [5]: value invention is
forced to be finite independent from the structure of the program. For details and examples of the finite
instantiation property, we refer to Sec. 4.1 in [30].

External predicate &transitive appears in a single constraint of the form ← not &transitive[eq](). Each
time this external computation evaluates to false, it creates nogoods that provide the reason for intransitivity
(i.e., a triple of literals eq(A,B), eq(B,C), ¬eq(A,C)) to the solver to assist the search for a transitive relation.
For more details see Section 4.2 in [30].

Importantly, F&invent does not use I and therefore external atoms of the form &invent[· · · ](· · · ) are of
type (G). Moreover, external predicate &transitive produces no values in output tuples (i.e., m = 0) and it
has type t1 = 2 (it uses the extension of a binary predicate p) therefore it is of type (S).

5.2 RDF Benchmark

The RDF plugin realizes the RDF triple external atom as described in Example 1. We here extend the original
application [18] with a second external atom of type (S). We experiment with the colinda [31] knowledge
graph which contains 150,000 triples about conferences.10 We perform the following three reasoning problems.

Import. We simply import all triples using the program

explore(”. . . /colinda.rdf”)← .

triple at(S, P,O)← &rdf [What ](S ,P ,O), explore(What).

which yields a single answer set with around 150,000 atoms.

Vegas. We are interested in names of all conferences in Las Vegas. The program

explore(”. . . /colinda.rdf”)← . location(”http://sws.geonames.org/3635260/”)← .

conference(Conf )← explore(G), location(Loc),

&rdf [G ](Conf , ”http://swrc.ontoware.org/ontology#location”,Loc).

title(Title)← explore(G), conference(Conf ),

&rdf [G ](Conf , ”http://swrc.ontoware.org/ontology#eventTitle”,Title).

yields a single answer set with 330 atoms, 164 of them containing the titles conferences in colinda that
took place in Las Vegas (encoded as ID 3635260).

Marathon. This is an optimization problem where we are interested in making a conference marathon for
visiting the maximum possible number of cities in France over two weeks. This is encoded in the following

10 Dataset retrieved from https://old.datahub.io/dataset/colinda .

7

https://old.datahub.io/dataset/colinda


hex program.

explore(”. . . /colinda.rdf”)← . country(”France”)← .

location(Loc)← explore(G), country(C ),

&rdf [G ](Loc, ”http://www.geonames.org/ontology#countryName”,C ).

conference(Conf ,Loc)← explore(G), location(Loc),

&rdf [G ](Conf , ”http://swrc.ontoware.org/ontology#location”,Loc).

in(Conf ) ∨ out(Conf )← conference(Conf ,Loc).

covered(Loc)← conference(Conf ,Loc), in(Conf ).

 

location(Loc),not covered(Loc). [1 ,Loc]

date(Date)← explore(G), in(Conf ),

&rdf [G ](Conf , ”http://swrc.ontoware.org/ontology#startDate”,Date).

← not &dates span days[date, 14 ].

This encoding represents locations in France in location, conferences and their locations (if in France) in
conference, and performs a guess (in) selecting relevant conferences. Those conferences that are selected
define which location is covered. We maximize coverage by incurring a cost of 1 for each location that is not
covered by means of the weak constraint (

 

). Furthermore, we extract dates of covered conferences in date
and use an external atom to indicate whether the dates lie within a 14 day period.

Function F&dates span days(I, p, d) is defined to return an empty tuple iff all dates X with p(X) ∈ I are
within d days of one another. The external computation of dates span days guides the search by providing
nogoods for all pairs of dates (X,X ′) with p(X), p(X ′) ∈ I and more than d days between X and X ′.

Evaluating this program yields an answer set with 29 locations and 404 conferences in France, and an
optimal selection of 6 conferences (in 6 distinct cities) which start between the 12th and the 23rd of March
2012.

5.3 Experimental Setup

We performed experiments on a computer with an Intel(R) i5-3450 CPU with 4 cores and 16 GB RAM
running Linux. For the Abduction Benchmark we limited memory consumption to 5 GB and execution time
to 300 s (5 min). For the RDF Benchmark we limited execution time to 1800 s (30 min). We never executed
more than 2 runs in parallel and we used non-parallel computation mode for solver settings. Time limits and
reported times are CPU times. To make the comparison fair, we used the same python plugin for dlvhex
and hexlite (the plugin API of hexlite is compatible with the one of dlvhex, including the API for
learning nogoods in external computations). We used the latest version of dlvhex11 and the latest version
of hexlite.12

5.4 Results

We will write TO (resp., MO) to indicate that the time (resp., memory) limit was exceeded.
Figure 2 shows cactus plots of the experiments on the abduction benchmark. For evaluation time (in-

stantiation and search), for SK/P1, hexlite solves each instance within at most 14 s while dlvhex fails to
solves 20 instances (8 times TO and 12 times MO). For SK/G1, hexlite fails to solve 32 instances because
of TO and dlvhex fails to solve 72 instances (46 times TO and 26 times MO). hexlite solves all instances
that dlvhex manages to solve within the timeout. The corresponding plots of external computation times
show, that dlvhex calls the external computations more often than hexlite to solve the same instances.

11 We used git hash 5a1ee06d from git@github.com:hexhex/core.git because the stable version 2.5.0 performed
significantly worse.

12 Git hash d0e7896eb from git@github.com:hexhex/hexlite.git .

8

git@github.com:hexhex/core.git
git@github.com:hexhex/hexlite.git


0 20 40 60 80 100
0

20

40

ti
m

e
u
sa

g
e

(s
)

SK/P1

dlvhex2

hexlite

0 20 40 60 80 100
0

100

200

300

SK/G1

0 20 40 60 80 100
0

5

10

15

E
x
te

rn
a
l

ti
m

e
u
sa

g
e

(s
)

0 20 40 60 80 100
0

50

100

150

200

0 20 40 60 80 100
0

200

400

600

m
em

o
ry

u
sa

g
e

(M
B

)

0 20 40 60 80 100
0

1,000

2,000

3,000

Fig. 2. Abduction benchmark: cactus plots for evaluation time, external computation time, and memory usage with
two different value invention limits (SK/P1 and SK/G1).

The plots of memory consumption show, that memory consumption of dlvhex rises steeper than the one of
hexlite. Overall, hexlite shows a much better performance than dlvhex on the abduction benchmark,
and the difference between the solvers is more striking for SK/G1 variant.

Table 1 shows results of running the RDF benchmark using dlvhex and hexlite. Interestingly, the only
timeout happens for Import where the whole set of RDF triples is represented in the answer set. dlvhex
cannot compute the result within 30 min. For Vegas, where many triples can be ignored, both dlvhex and
hexlite are more efficient than for Import, however dlvhex requires 3 min while hexlite requires 20 s
to perform this (deterministic) computation. The search/optimization problem Marathon shows a big gap
between dlvhex and hexlite, both in terms of time and space. In particular, hexlite performs fewer
external atom calls and requires learning of fewer nogoods from the external computation in order to find an
optimal answer set and prove its optimality. This can be explained by the lightweight usage of the clingo
optimization feature in hexlite, while dlvhex performs a lot of bookkeeping and additional computation
to perform optimization.
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External Computations
Problem Engine Time Space Result Calls Time Learned

s MB # s #

Import
dlvhex 1,800 4,321 TO 1 19 0
hexlite 31 254 OK 1 25 0

Vegas
dlvhex 185 987 OK 2 38 0
hexlite 20 191 OK 1 17 0

Marathon
dlvhex 1,127 2,462 OK 2,543 58 29,860
hexlite 28 199 OK 777 23 21,322

Table 1. RDF benchmark: results of evaluating dlvhex and hexlite on the COLINDA conference knowledge graph.

6 Discussion and Conclusion

Our experiments show, that hexlite has better performance than dlvhex in two real-world applications of
hex which are both in the Pragmatic hex Fragment. Clearly, not all hex programs are in PHF and some
problems will be difficult to convert into PHF. Nevertheless, wherever hexlite can be applied it can be a
faster alternative to dlvhex that is also easier to install as it is fully implemented in python. In cases where
the program contains only external atoms of type (S) and there is a loop over at least one such external
atom in the program, the FLP check becomes mandatory and the dlvhex system will most likely have a
better performance than hexlite because of its more advanced method for performing the FLP check [12].
If only external atoms of type (G) exist, hexlite will most likely perform better than dlvhex.

There are several reasons for the better performance of hexlite compared with dlvhex. Firstly, hexlite
can remove many external atoms during grounding and they will not even be seen by the solver, while dlvhex
creates guesses for all external atoms, even those that do not depend on the interpretation, and needs to
verify their truth during the solving. This eliminates a lot of potential for backend solver preprocessing in
dlvhex. Secondly, hexlite passes all optimization tasks to the clingo solver backend and just checks during
propagation whether the current assignment is in itself consistent (all interpretations are checked against
external atom semantics, non-partial interpretations are additionally checked against the FLP property).
Opposed to that, dlvhex performs a lot of internal bookkeeping related to optimization and maintains
its own representation of the interpretation and its own cost representation for answer sets, which causes
significant memory and computation overhead.

Performance issues of dlvhex were the original reason that the tool for cost-based abduction described
in [30] is formalized using the hex formalism but implemented using a custom reasoner based on clingo.
With hexlite, this implementation could be realized with less effort and without a dedicated algorithm just
by using hexlite and implementations of two external computations.

hexlite uses many aspects of the clingo API, however it does not use clingo Externals [23] which are
truth values given ‘from the outside’ to the solving process. Instead, the hex notion of external computation
is in a tight interaction with the answer set candidate and the results of other external computations, and
during hex evaluation, truth values of externals might be reconsidered before finding an answer set. What
we do use in the FLP checker are clasp ‘assumptions’ to communicate the answer set candidate to the FLP
checker (which uses a single rewriting of the ground program for checking the FLP property of all potential
answer sets).

Related to this work is a study on lazy instantiation of constraints and an alternative usage of propagators
instead of constraints [7] using the wasp solver [1,2]. In the future, wasp could be integrated into hexlite
as an alternative to the clingo backend, the python API of wasp could be used to deal with external
atoms of type (S). The new dlv grounder and its externals [6] could be integrated to handle external atoms
of type (G).
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We are glad that a study on Inductive Logic Programming [25] was successfully realized using hexlite.
A (pragmatic) fragment of the acthex extension of hex [3,22] based on hexlite is available in the hexlite
Git repository.
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