
1

M A R M A R A U N I V E R S I T Y
I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

C o r e f e r e n c e R e s o l u t i o n S i e v e B a s e d o n

 A n s w e r S e t P r o g r a m m i n g

KENDA ALAKRAA

MASTER THESIS

Department of Computer Engineering

Thesis Supervisor

Asst Prof . Dr . Peter Schül ler

ISTANBUL, 2017

M A R M A R A U N I V E R S I T Y
I N S T I T U T E F O R G R A D U A T E S T U D I E S

I N P U R E A N D A P P L I E D S C I E N C E S

C o r e f e r e n c e R e s o l u t i o n S i e v e B a s e d o n

 A n s w e r S e t P r o g r a m m i n g

KENDA ALAKRAA

(524113924)

MASTER THESIS

Department of Computer Engineering

Thesis Supervisor

Asst Prof . Dr . Peter Schül ler

ISTANBUL, 201 7

Acknowledgments

In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all praises to Allah

for the strengths and His blessing in completing this thesis.

I wish to express my special appreciation and my sincere thanks to my advisor Assistant Professor

Peter Schüller, who taught me the value of hard work and an education. Although I had little expe-

rience, he is the one who believed that I can do master when even sometimes I lost trust in myself.

Without him, I may never have gotten to where I am today.

My deepest gratitude goes to my late father Mr. Alakraa Mansour and my mother Mrs. Rahhal

Suria for their endless love, prayers, encouragement, and all the support they have provided me over

the years.

I owe thanks to a very special person, my husband, for his love, care, support, and understanding

that made the completion of thesis possible.

Special and profound thanks to my brothers and sisters, Iyad, Omar, Furat, Ahmad, Najd, and

Abdulazeez who offered support and humor over the years,

Many thanks to all my friends Noor, Lina, Ilham, Lama, Dalya, Raneem, Gamze, and Zuhal.

To Şadan Safranbolu abla, I can not find words to thank you "Allah sizden razi olsun ablam".

To those who indirectly contributed in this research. Thank you very much.

This work has been supported by The Scientific and Technological Research Council of Turkey

(TUBITAK) under grant 114E430.

i

Contents

Özet v

Abstract vii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Material and Method 5

2.1 THE Sieve APPROACH . 5

2.2 ANSWER SET PROGRAMMING . 8

2.2.1 Answer Set Programming For Natural Languages Processing 9

2.3 STANFORD CORENLP TOOLKIT . 10

2.4 ASP ENCODING OF THE Sieve SYSTEM . 12

2.4.1 Mention Selection In a Given Sieve . 15

2.4.2 Feature Sharing In The Entity-Centric Model 17

2.4.3 Coreference Resolution Sieves . 20

iii

3 Results and Discussion 41

3.1 CORPORA . 41

3.2 EVALUATION . 41

3.3 ASP SIEVE IMPLEMENTATION . 43

3.4 EXPERIMENTAL RESULTS . 46

3.5 Conclusion . 47

3.6 Summary . 49

iv

Özet

Çözüm Kümesi Programlama tabanlı Eşgönderge Çözüm-
lenmesi Eleği

Coreference (eşgönderge) çözümlenmesi, cümleleri ve aynı gerçek dünya varlığını ifade ettik-

leri takdirde metin içindeki edatları bağlama işine verilen isimdir. Bu görevde yüksek başarı elde

etmek bilgi ve semantik gerektirir, örneğin; "Obama" ve "başkan" kelimeleri arasında bağlantı

kurulmalı ya da içerik bilgisine bağlı olarak, mesela bu bilgi makalenin tarihi olabilir, o takdirde

bu iki kelime arasında bağlantı kurulmamalıdır. Modern son teknoloji coreference çözümlen-

mesi methodları istatistiksel yöntemleri veya kuralları veya her ikisini birden kullanır, ancak nadi-

ren metnin yüzeyinin ötesine geçer. Bu çalışmada Stanford "dcoref" coreference çözümlenmesi

mimarisinin, bilginin entegrasyonunu sağlayacak hesaplama mantığı kullanarak uyarlanmasını

önerilmektedir. Stanford Sieve deterministik mimarisini uygulamak için temel bir kural çerçevesi

tanımlanmaktadır, bu da deterministik parçayı gerçekleştirmenin uygun olduğunu göstermektedir.

Yaptığımız iş, deterministik mimariyi nondeterministik hale getirmeye yönelik ilk adımdır. Vizy-

onumuz, yeni mimarinin, (i) bağlantılar üzerinde kısıtlamalar getirmesi ve (ii) sığ semantik bil-

giye dayalı olarak keşfedilemeyen bağlantılar için yeni adaylar üretebilmesi için, yeni mimarinin

anlambilimsel bilgiyi bütünleştirmesine olanak tanımasıdır. Çerçevemizle elde ettiğimiz deney-

sel sonuçlar, hesaplama mantığının istenen esnekliği sağladığını, bununla birlikte çok daha fazla

kaynak gerektirdiğini önermektedir. Bu, kuralları daha az sürdürülebilir hale getiren performans

kurallarını ayarlayarak önlenebilir ve ileride otomatik kural tabanlı optimizasyon algoritmalarının

geliştirilmesinde kullanılması önerilmektedir .

Keywords: Eşgönderge çözümlenmesi, Sieve sistemi, Stanford CoreNLP.

v

Abstract

Coreference Resolution Sieve Based on Answer Set Pro-
gramming

Coreference Resolution is the task of connecting phrases and prepositions in a text if they de-

note the same real world entity. Succeeding with a high score in this task naturally requires

knowledge and semantics, for example to link “Obama” with “the president”, or, depending on

the context, for example the date of the article, not to link these phrases. Contemporary state-of-

the-art Coreference Resolution methods use statistical methods or sets of rules or both, but rarely

go beyond the surface of the text. We propose an adaptation of the Stanford “dcoref” Coreference

Resolution architecture using computational logic, which will allow an integration of knowledge.

We describe a basic rule framework for applying the deterministic architecture of Stanford Sieve

which shows that realizing the deterministic part is feasible. Our work is the first step toward

making the deterministic architecture nondeterministic. Our vision is that this will allows the new

architecture to flexibly integrate semantic knowledge in order to (i) impose constraints on links as

well as (ii) generate new candidates for links that cannot be discovered based on shallow semantic

knowledge. Our empirical results with our framework suggest, that computational logic provides

the desired flexibility, however it also requires significantly more resources. This can be averted

by tuning the rules for performance, which unfortunately makes the rules less maintainable and

suggests future development of automatic rule-base optimization algorithms.

Keywords: Coreference resolution, Sieve system, Stanford CoreNLP.

vii

List of Abbreviations

ASP Answer Set Programming

BLANC BiLateral Assessment of NounPhrase Coreference

CEAF Constrained Entity Aligned F-measure

CNL Controlled Natural Language

CR Coreference Resolution

ID Identifier

GDT Generate, Define, and Test

NER Named Entity Recognition

NLP Natural Language Processing

NP Noun Phrases

P Precision

POS Part Of Speech

R Recall

ix

List of Figures

2.1 Stanford Sieve architecture . 6

3.1 OntoNotes coreference annotation view . 42

3.2 CoNLL file format . 44

3.3 Our system . 45

3.4 Required times (in seconds) for ASP reasoning in TEST portion of the English OntoNotes

corpus, sorted by the required time. 48

xi

List of Tables

3.1 Experimental results . 47

xiii

Chapter 1

Introduction

Coreference resolution is the task of determining noun phrases that denote the same real world entity

in natural language [29, 14, 21] such noun phrases are called mentions. They can be either nominal

(Mr. Smith) or pronominal (she). In the sentence ”He said to the people: ’I need your help’ " the

mentions ”he" and ”I" will be connected as they denote the same entity (the speaker), and ”the people"

and ”your" will also be connected, as they denote the listener. Nominal coreference is challenging,

Noun phrases (NP) can be synonyms, hypernyms, or hyponyms, or they can be linked because of dis-

course information and background knowledge [22]. Pronominal coreference is more challenging, it

requires deep language understanding and use of background knowledge, where linguistic constraints

(e.g., agreement of features like gender or number) are not sufficient for connecting the pronoun with

the correct entity. Coreference resolution is important for natural language understanding tasks like

summarization, question answering, and information extraction [16].

Research in coreference resolution showed that to achieve high quality resolution it is extremely

important to use highly precise lexical and syntactic features, and to perform coreference resolution

together for several mentions rather than considering only just two mentions [16]. In Coreference

resolution, several methods have been proposed, mostly depends on machine learning Denis and

Baldridge (2007) describe a supervised statistical approach based on a Maximum Entropy Model

which is evaluated using Integer Linear Programming. Culotta, Wick, and Mccallum (2007) use

Markov Logic Networks. Supervised machine learning approaches to coreference resolution are more

common than unsupervised ones, they require expensive labeled data, and generalize not so well to

new words or domains. Unsupervised systems like Haghighi and Klein (2007); Ng (2008); Poon and

Domingos (2008) who uses Expectation Maximization, Markov Logic and a nonparametric Bayesian

1

model, respectively are attractive due to the availability of large quantities of unlabeled text. However,

unsupervised coreference resolution is much more complicated, making them difficult to be applied

to new cases and genres too.

Answer Set Programming (ASP) is a general purpose logic programming formalism oriented

towards difficult search problems, it is an evolution of research on the use of nonmonotonic reasoning

and knowledge representation, which has been getting increasing attention during the last years [9,

12, 18]. ASP is relatively new, it has been proposed as a programming paradigm in 1999 and has

been applied for problems from many areas since then. ASP has proven to be an effective approach

for many important computational problems in combinatorial optimization, constraint satisfaction

and artificial intelligence. Nevertheless, it has mainly been used by people from academia and has

not become a mainstream programming approach yet [15]. One possible explanation for that is that

writing an answer-set program is quite different from what developers are used to, developers are

used to tools, methods, and methodologies that ease the programming process, however many of

these techniques cannot be applied to ASP in a straightforward way [24]. In an ASP logic program

we describe (i) a set of potential solutions, (ii) relationships between concepts in the solution, and

(iii) constraints on solutions. This logical representation of the problem will be given to ASP solver

(a software tool) that will compute solutions that stick to the specified relationships and constraints.

Stanford’s Sieve [16] is recently introduced deterministic coreference resolution approach that

is now the most successful, and surpassed pure machine learning approaches [20]. It integrates the

global information and accurate characteristic of new machine-learning patterns with the transparency

and modularity of deterministic, rule-based systems [16]. The Sieve consists of ten passes that will

be applied one at a time from the highest to to lowest precision. The output of each pass is a set

of clusters (entities) where each cluster contains the mentions that have been linked. Each model

processes the output comes from the previous model in deterministic way i.e. links that have been

considered can not be reconsidered by any other model.

In this work, we aim to generalize the Sieve architecture using computational logic, to allow usage

of knowledge resources to assist coreference resolution, to prevent wrong links between mentions (at-

tribute checks) and to generate candidates for links between mentions using Answer Set Programming

(ASP), we represent the Sieve architecture and its individual modules completely in the rule-based

ASP formalism.

So far we have created the theoretical framework for this idea, and performed experiments with the

2

deterministic part of a rule-based replica of Stanford dcoref. Our experiences so far show that the idea

is feasible however additional tool support for optimizing programs would greatly ease the process

of developing such a system. Creating a rule-based system in a rule-based formalism gives us the

advantage of making rules more explicit and having the possibility to make the rules nondeterministic.

3

Chapter 2

Material and Method

2.1 THE Sieve APPROACH

The Sieve technique [16] is a deterministic, non-statistical, and rule based approach for corefer-

ence resolution. it starts by detecting the mentions using high recall algorithm, this algorithm picks

out all NPs, pronouns, and named entity as candidate mentions, and after that removes from them

non-mentions (quantifier expressions, numeric mentions, stop words, etc.). After that the coreference

resolution begins where ten models see figure 2.1 will be applied one at a time to link mentions. Each

model processes the output of the previous model (clusters) where only first mentions in the textual

order in their cluster will be considered. In general mentions that appear earlier in the text are better

defined than the ones that come later, they usually have more modifiers and mostly not pronouns.

Also as they are closer to the beginning of the text, they have fewer antecedent candidates, and so

fewer opportunities to make a mistake in linking [16]. The Sieve ends up with a small post process-

ing step where mentions with singleton clusters (clusters that have one mention) and links obtained

through predicate nominative pattern will be removed, this is important to to align Sieve result with

the OntoNotes (used corpora) annotation standards.

The Sieve approach is entity-centric, where linking two mentions does not depend only on their

features (non-stop words, head word, gender,number ,etc.), but it considers any information about the

other mention in their clusters. Each model uses the information about all the mentions in the clusters

not only the considered mention and its antecedent candidate in the coreference, that is so important

especially for the pronominal coreference (tenth model) with the highest recall and lowest precision,

this model enforces agreement constraints between mentions, and can be strictly affected by missing

5

Figure 2.1: Stanford Sieve architecture

attributes [16]. A sample run-through of the Sieve approach [16], consider the following sequence of

sentences.

Jack is a painter 2) He painted a new picture.

3) A women was looking to the picture. 4) “It is my favorite, ”Jack said to her.

As we mentioned, the Sieve starts by detecting mentions and assigns each one to a cluster, superscript

and subscript are used to mark cluster ID and mention ID.

[Jack]11 is [a painter]22. [He]33 painted [a new picture]44.

[A woman]55 was looking to [the picture]66. “[It]
7
7 is [[my]99 favorite]

8
8 ,

′′ [Jack]1010 said to[her]1111.

the first model Speaker Identification with the highest precision matches speakers to compatible pro-

nouns that appear in a quotation. So the mentions my, and the speaker Jack will be linked in this

model, and their clusters will be merged in one cluster number nine

[Jack]11 is [a painter]22. [He]33 painted [a new picture]44.

6

[A woman]55 was looking to [the picture]66. “[It]
7
7 is [[my]99 favorite]

8
8 ,

′′ [Jack]910 said to[her]1111.

The second model String Match links a nominal mention with its antecedent if they have the same

extent text, so the tenth mention, Jack will be linked to the first mention Jack, and their clusters will

be merged

[Jack]11 is [a painter]22. [He]33 painted [a new picture]44.

[A woman]55 was looking to [the picture]66. “[It]
7
7 is [[my]19 favorite]

8
8 ,

′′ [Jack]110 said to[her]1111.

The relaxed string match model links two nominal mentions satisfying a more relaxed string matching

constraints than exact match, there are no such mentions, so no changes in the clusters. In the pre-

cise constructs model, several syntactic constructs (appositive relations, predicate nominatives, role

appositive, etc.) have been used to link mentions. Two predicate nominative relations exist in this

example, in the first sentence the mentions Jack and a painter will be linked, also the mentions it and

my favorite in the fourth sentence.

[Jack]11 is [a painter]12. [He]33 painted [a new picture]44.

[A woman]55 was looking to [the picture]66. “[It]
7
7 is [[my]19 favorite]

7
8 ,

′′ [Jack]110 said to[her]1111.

The next four models (5,6,7, and 8) link mentions with the same head word, and satisfying several

constraints that differ between them. The mentions a new picture and the picture are linked in such

models.

[Jack]11 is [a painter]12. [He]33 painted [a new picture]44.

[A woman]55 was looking to [the picture]46. “[It]
7
7 is [[my]19 favorite]

7
8 ,

′′ [Jack]110 said to[her]1111.

The tenth model is Pronominal Coreference Resolution, this model uses a standard approach for many

years : enforcing attribute agreement constraints such as gender, and number between the coreferent

mentions, several links can be made according to this model

7

• he and first mention Jack.

• it and the picture.

• her and a woman.

[Jack]11 is [a painter]12. [He]13 painted [a new picture]44.

[A woman]55 was looking to [the picture]46. “[It]
4
7 is [[my]19 favorite]

7
8 ,

′′ [Jack]110 said to[her]511.

At last post-processing step comes, where singleton clusters, and links made using predicate nomina-

tive relation will be removed.

[Jack]11 is a painter. [He]13 painted [a new picture]44.

[A woman]55 was looking to [the picture]46. “[It]
4
7 is [my]19 favorite ,

′′ [Jack]110 said to[her]511.

So we get the following sets of mentions or chains (also called entities) :

• {1; 3; 9; 10} (Jack, He, my, Jack);

• {4; 6; 7} (a new picture, the picture, It);

• {5; 11} (A woman, her).

2.2 ANSWER SET PROGRAMMING

ASP is a form of declarative problem solving approach, initially oriented towards modeling prob-

lems in the area of knowledge representation and reasoning. It is based on the stable model (answer

set) semantics of logic programming. It is a Balance between expressivity, ease of use, and com-

putational effectiveness [4, 2]. A common methodology to solve a problem in ASP is GENERATE,

DEFINE, and TEST (GDT), which is sometimes also called Guess and Check .

8

The GENERATE part defines the search space, a large collection of answer sets that could be

seen as potential solutions. The TEST part prunes all bad potential solutions. The DEFINE section

expresses additional concepts, and connects the GENERATE and TEST parts [3, 8].

ASP program is a set of rules, some rules are similar to traditional Prolog rules, for instance the

program

p← q .

q← not r .

consists of such rules, and has one stable model, which consists of p and q. In addition to Prolog rule

ASP program consists of other kind of rules, choice rules, and constraints. choice rules are the main

elements of the GENERATE part of the program that generate the search space, for example

{s, t}← p.

It means that if p is included in the stable model, the answer sets of this one rule program are arbitrary

subsets of the atoms s, t. Constraints form the TEST part of the program, constraints define the

conditions that must be met, accordingly several candidate solutions will be eliminated. Rules with

an empty head represent the constraints. For instance, the constraint

← p, not q .

eliminates the answer sets that include p and do not include q.

ASP Programs is usually processed in two steps. The First step is grounding where the program

with variables is replaced by an equivalent program without variables. The second step is solving this

propositional program by a backtracking search algorithm that finds one or more of its answer sets

or determines that no answer sets exist. The currently used software tools in each step referred to as

grounder and solver, respectively, have already reached the level of performance that makes it possible

to use them successfully with programs arising from problems of practical importance [24, 5, 7].

2.2.1 Answer Set Programming For Natural Languages Processing

The GDT methodology is similar to ambiguities in natural language where certain levels of linguistic

representation contain ambiguities that generate a set of possible decisions, and other levels of rep-

resentation test if linguistic constraints are satisfied. These generated possibilities and tests can be

9

connected by several layers of linguistic representation. For example, in the sentence ”He deposited

money at the bank." assigning a meaning to the word ”bank" generates the possibilities that bank is a

money institute or a river bank or a bench to sit on. Semantic modules, e.g., FrameNet can then define

a more holistic representation of the sentence that captures more of the overall meaning than a syn-

tactic representation. In our example such a holistic representation can contain the information that

the ”money institute" decision makes the sentence a common event in daily life, whereas the ”river

bank" or ”bench" decisions means that the sentence contains an unusual (possibly criminal) activity.

As a consequence a test module that selects if the text before hints at criminal activity can eliminate

at least one of the decisions such that only valid results remain. ASP is the ideal tool for addressing

ambiguity in natural language because ASP is designed to perform exactly such reasoning, and to

perform it in an efficient way.

For example, in [11] they introduced a Controlled Natural Language (CNL) which is a formal lan-

guage but with a look of a natural language for biomedical queries to facilitate access to biomedical

ontologies. CNL is similar to natural languages with a restricted grammar and vocabulary, to over-

come the ambiguity of natural languages, so it can be easily converted to ASP program. Automated

reasoners in ASP can then be used to find answers to queries expressed in a CNL.

ASP community has created several tools for performing reasoning with hybrid knowledge sources

within ASP and those software tools — in particular clingo [13], and wasp [1] are tuned for efficient

reasoning and freely available to use in the our project.

2.3 STANFORD CORENLP TOOLKIT

We will focus only on the second stage of the Sieve (coreference) and reuse existing methods

for mention detection, Stanford CoreNLP toolkit [20] have been used, it is extensible pipeline that

provides core natural language analysis. This toolkit is quite widely used, both in the research NLP

community, and also among commercial and government users of open source NLP technology [20].

Mentions, that have been detected, and information about them have been represented as facts

in ASP, for each mention we have the mention text M, Identifier ID, sentence number SN (Number

goes from 0 upwards), animacy attribute (animate, inanimate) ANIM, word index of the mention’s

first word in its sentence SI, word Index of its last word EI, gender attribute (male, female, neutral)

G, head word of the mention HW, type of the mention (proper, nominal, pronominal, ..) T, person

10

attribute P just for pronominal mentions (for example my mention gets I person attribute and so

on. . .), named entity recognition tag NER (names of persons, organizations, locations, expressions

of times, monetary values,...), number attribute (Singular, plural) ISPR. If Stanford is not able to

determine the value of the attribute, it will get UNKNOWN value.

mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,T ,P ,NER, ISPR).

mention(”marmara university”, 1 , 0 , ”INANIMATE”, 5 , 7 ,

”NEUTRAL”, ”university”, ”PROPER”, ”UNKNOWN ”,

”ORGANIZATION ”, ”UNKNOWN ”).

Stanford assigns values to the mention’s attribute as follow

1. Number: are assigned according to: (a) pronouns’ list; (b) NER labels: named entity mentions

are singular except for organizations(singular or plural); c) part of speech (POS) tags: NN* tags

are singular except for NN*S tags are plural; and (d) Bergsma and Lin (2006) static dictionary

[16].

attribute(”number”).

2. Gender: are assigned based on Bergsma and Lin (2006), and Ji and Lin (2009) static lexicons.

attribute(”gender”).

3. Person: are assigned only for pronominal mentions. this constraint is not required when linking

pronouns.

attribute(”person”).

4. Animacy: are assigned using: (a) pronouns’ list; (b) NER labels: where mentions with PER-

SON NER label are animate while LOCATION mentions are not; and (c)the Web (Ji and Lin

2009) dictionary bootstrapped [16].

attribute(”animacy”).

5. NER label :are assigned using Stanford NER [16].

attribute(”ner”).

11

Words of each mention are also important as input to the Sieve, so the Mention with identifier ID has

a word W, this word has an identifier WS, type (stop, nonstop) WT, and sequence number in whole

text WSS.

word(ID ,W ,WS ,WT ,WSS).

word(1 , ”university”, 1 , ”nonstop”, 2).

Also mention’s Modifiers, mention with the ID has a modifier MM, with an identifier S, part of speech

POS tag T.

mod(ID , S ,MM ,T).

mod(1 , 1 , ”marmara”, ”NNP”).

NER tag for the modifier, the modifier of the mention ID with the identifier S has NER tag NER.

loctagofmod(ID , S ,NER).

loctagofmod(2 , 2 , ”ORGANIZATION ”).

Part of speech POS tag of the mention’s head word POS

headwordtype(ID ,POS).

headwordtype(1 , ”nn”).

The mention ID represents a name of state or abbreviation of state’s name, for example mention with

the text California, or its abbreviation CA.

stateorabb(ID).

We add more facts such dependency parsing information obtained from Stanford, for example Pred-

icate nominative i.e. the two mentions are in a copulative subject–object relation, mentions Marmara

University and one of the oldest educational institutions have such relation

[Marmara University] is [one of the oldest educational institutions].

predicatenominative(6, 5).

2.4 ASP ENCODING OF THE Sieve SYSTEM

The facts of the passes, and their sequences. The atom nextStage(Pass1,Pass2) defines the order of

the passes, the source pass Pass2 and the result Pass1. The atom activatePass(Pass) activates passes

12

nextStage(0 , 1). activatePass(1).

nextStage(1 , 2). activatePass(2).

nextStage(2 , 3). activatePass(3).

nextStage(3 , 41). activatePass(41).

nextStage(41 , 42). activatePass(42).

nextStage(42 , 43). activatePass(43).

nextStage(43 , 44). activatePass(44).

nextStage(44 , 45). activatePass(45).

nextStage(45 , 46). activatePass(46).

nextStage(46 , 4). activatePass(4).

nextStage(4 , 5). activatePass(5).

nextStage(5 , 6). activatePass(6).

nextStage(6 , 7). activatePass(7).

nextStage(7 , 8). activatePass(8).

nextStage(8 , 9). activatePass(9).

nextStage(9 , 10). activatePass(10).

There are several facts and rules have been used in the implementation of the Stanford Sieve. First

person pronouns as ASP facts.

firstpersonpronoun(”i”).

firstpersonpronoun(”me”).

firstpersonpronoun(”myself ”).

firstpersonpronoun(”mine”).

firstpersonpronoun(”my”).

firstpersonpronoun(”we”).

firstpersonpronoun(”us”).

firstpersonpronoun(”ourself ”).

13

firstpersonpronoun(”ourselves”).

firstpersonpronoun(”ours”).

firstpersonpronoun(”our”).

Also second person pronouns.

secondpersonpronoun(”you”).

secondpersonpronoun(”yourself ”).

secondpersonpronoun(”yours”).

secondpersonpronoun(”your”).

secondpersonpronoun(”yourselves”).

Location facts

locationmodifier(”east”).

locationmodifier(”west”).

locationmodifier(”north”).

locationmodifier(”south”).

locationmodifier(”eastern”).

locationmodifier(”western”).

locationmodifier(”northern”).

locationmodifier(”southern”).

locationmodifier(”upper”).

locationmodifier(”lower”).

Mention’s head word

hwmen(ID ,HW)←mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,T ,P ,NER, ISPR).

hwmen(1 , ”university”)←mention(”marmara university”, 1 , 0 , ”INANIMATE”,

5 , 7 , ”NEUTRAL”, ”university”, ”PROPER”, ”UNKNOWN ”,

”ORGANIZATION ”, ”UNKNOWN ”).

Cluster’s head words set includes the head word of every mention in this cluster, Cluster C has a head

word HW in the pass P.

hwsc(C ,HW ,P)←mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,T ,P ,NER, ISPR),

14

incluster(ID ,P ,C).

hwsc(4 , ”university”, 2)←mention(”marmara university”, 1 , 0 , ”INANIMATE”,

5 , 7 , ”NEUTRAL”, ”university”, ”PROPER”, ”UNKNOWN ”,

”ORGANIZATION ”, ”UNKNOWN ”), incluster(1 , 2 , 4).

Clusters of each pass Pass.

cluster(C ,Pass)← incluster(ID ,Pass ,C).

Mentions in the same clusters in a pass Pass.

samecluster(ID1 , ID2 ,Pass)← incluster(ID1 ,Pass ,C),

incluster(ID2 ,Pass ,C), ID1 ! = ID2 .

Pronominal mentions, mention’s type T is PRONOMINAL

pronominal(ID)←mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,

T ,P ,NER, ISPR),T == ”PRONOMINAL”.

Nominal mentions, mention’s type T equlas one of the values {NOMINAL;PROPER;LIST}

nominal(ID)←mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,T ,P ,

NER, ISPR),T == (”NOMINAL”; ”PROPER”; ”LIST”).

Links in all passes are symmetric and transitive

link(ID2 , ID1 ,Pass) : −link(ID1 , ID2 ,Pass).

link(ID1 , ID3 ,Pass) : −link(ID1 , ID2 ,Pass), link(ID2 , ID3 ,Pass),

ID1 ! = ID2 , ID2 ! = ID3 , ID1 ! = ID3 .

2.4.1 Mention Selection In a Given Sieve

Before the Sieve starts, we have a cluster for each mention, passing through the models links are

detected, and clusters are merged.The atom incluster(ID, P,C) indicates the cluster C of the mention

ID after a pass P. Mention with ID 50 is in cluster 50 in pass zero i.e. before Sieve system starts

incluster(50 , 0 , 50).

15

the variable P in the atom incluster(ID ,P ,C) goes from zero to ten, here the mention has changed

its cluster after pass 6 to 34 .

incluster(50, 6, 34).

Only mentions with the smallest ID in its clusters will be considered in the resolution, ASP aggregate

min are used to get those mentions for every clusters, so Mention Y is the first mention in the cluster

C in Pass P.

firstmenofclu(Y ,P ,C)←Y = #min{ID : incluster(ID ,P ,C), incluster(Y ,P ,C)}.

Search space have been pruned using a simple model of discourse salience [16]. Some mentions even

though they are first in their clusters will not be considered in coreference.

(a) Are or start with indefinite pronouns, the first word W (its identifier is zero) of the mention ID is

an indefinite pronoun.

indefinitepronounstrw(ID)←word(ID ,W , 0 ,WT ,WS),

W == (”another”; ”anybody”; ”anyone”; ”anything”;

”each”; ”any”; ”less”; ”somebody”; ”somebody”;

”either”; ”enough”; ”everybody”; ”everyone””;

”neither”; ”nobody”; ”nothing”; ”one”; ”other”; ”plenty”;

”something”; ”both”; ”few”; ”fewer”; ”many”; ”others”;

”more”; ”most”; ”none”; ”some”; ”such”; ”little”; ”much”;

”someone”; ”several”; ”all”; ”everything”; ”somebody”).

For the “no one” indefinite pronoun, both the first word W1 and the second word W2 of the mention

ID have to be checked.

indefinitepronounstrw(ID)←word(ID ,W1 , 0 ,WT1 ,WS1),

word(ID ,W2 , 1 ,WT2 ,WS2),W1 == ”no”,W2 == ”one”.

(b) Start with indefinite articles, the first word W of the mention ID is an indefinite article

indefinitearticlestr(ID)←word(ID ,W , 0 ,WT ,WS),W == (”an”; ”a”).

(c) Are bare plurals like (restaurants, dogs. . . .)[16].

generic(ID).

16

Pruning search for the mention ID for one of the previously mentioned cases

prunemen(ID)← indefinitepronounstrw(ID); indefinitearticlestr(ID); gneric(ID).

The pruning will be applied in all passes except for Exact String Match pass, which links mentions

with the same text[16].

2.4.2 Feature Sharing In The Entity-Centric Model

Using all the information about every mention in the clusters of the mention to be considered and its

antecedent candidate not only their local features is so important in linking those two mentions espe-

cially in pronominal coreference. So for each cluster all its mentions’ attributes (number,person,NER,

gender, animacy) participate in the linking decision. For example if those two mentions are in the

same cluster

mention(”a group of students”, 58 , 16 , ”INANIMATE”, 2 , 6 , ”NEUTRAL”,

”group”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

mention(”fivestudents”, 61 , 17 , ”ANIMATE”, 4 , 6 , ”UNKNOWN ”, ”students”,

”NOMINAL”, ”UNKNOWN ”, ”O”, ”PLURAL”).

Attributes’ sets of this cluster become

1. Number attribute {SINGULAR, PLURAL}

2. Ner attribute {O}

3. Person attribute { UNKNOWN }

4. Gender attribute { NEUTRAL, UNKNOWN }

5. Animacy attribute { INANIMATE, ANIMATE }

Therefore, this cluster can be merged with both inanimate and animate pronouns. Attributes rules for

the mentions

attributeofmention(ID , ”number”, ISPR)←mention(M , ID , SN ,ANIM , SI ,EI ,

17

G ,HW ,T ,P ,NER, ISPR).

attributeofmention(ID , ”animacy”,ANIM)←mention(M , ID , SN ,ANIM , SI ,EI ,

G ,HW ,T ,P ,NER, ISPR).

attributeofmention(ID , ”gender”,G)←mention(M , ID , SN ,ANIM , SI ,EI ,

G ,HW ,T ,P ,NER, ISPR).

attributeofmention(ID , ”person”,P)←mention(M , ID , SN ,ANIM , SI ,EI ,

G ,HW ,T ,P ,NER, ISPR).

attributeofmention(ID , ”ner”, ”UNKNOWN ”)←mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,

T ,P ,NER, ISPR),NER == (”O”; ”MISC”).

attributeofmention(ID , ”ner”,NER)←mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,

T ,P ,NER, ISPR),NER! = ”O”,

NER! = ”MISC”.

Cluster’s attribute values are the attribute’s value of its mentions

attributeofc(Cluster ,Value, attribute_Type,Pass)← incluster(MentionID ,Pass ,Cluster),

attributeofmention(MentionID ,

attribute_Type,Value),

attribute_agreement_for_stage(Pass).

The two clusters can have agreement in an attribute in one of the two cases

• The attribute att_Type has UNKNOWN value in its value list in both clusters C1 and C2 in pass

P

attributeagreement(C1 ,C2 , att_Type,P)←V _1 == ”UNKNOWN ”,

V _2 == ”UNKNOWN ”,

attributeofc(C1 ,V _1 , att_Type,P),

attributeofc(C2 ,V _2 , att_Type,P),

C1 ! = C2 , attribute_agreement_for_stage(P).

• If not, the values of each attribute except for the UNKNOWN value for one cluster must be

included in the value set of the other cluster (inclusion between attribute value sets of the clus-

ters). We are checking if there is at least one value for an attribute that is in the attribute set of

18

one cluster, and not in the other cluster attribute set. Counting the attribute’s values that are not

UNKNOWN in each cluster, cluster C has X values for the attribute att_Type in pass P

noofcatt(C ,X , att_Type,P)←X = #count{C ,V , att_Type,

P : attributeofc(C ,V , att_Type,P),

V ! = ”UNKNOWN ”}, cluster(C ,P), attribute(att_Type),

attribute_agreement_for_stage(P).

For pairs of distinct clusters and attribute value that occurs in both clusters, clusters C1, C2

have the same value Value which is not UNKNOWN for the attribute att_Type in the pass P

att_has_partner(C1 ,C2 ,V ,P , att_Type)← attribute_agreement_for_stage(P),

attributeofc(C1 ,V , att_Type,P),

attributeofc(C2 ,V , att_Type,P),

Value! = ”UNKNOWN ”, cluster(C1 ,P),

cluster(C2 ,P),C1 ! = C2 .

Attribute att_Type has a value Value which is not UNKNOWN in cluster C1, that is not in

cluster C2

att_has_no_partner_w(C1 ,C2 ,V ,P , att_Type)← attribute_agreement_for_stage(P),

attributeofc(C1 ,V , att_Type,P),

not att_has_partner(C1 ,C2 ,V ,P ,

att_Type),

cluster(C1 ,P), cluster(C2 ,P),

C1 ! = C2 ,V ! = ”UNKNOWN ”.

There is an attribute att_Type that has value in C1 but not in C2 in pass P

att_has_no_partner(C1 ,C2 ,P , att_Type)← attribute_agreement_for_stage(P),

att_has_no_partner_w(C1 ,C2 , _,P , att_Type),

cluster(C1 ,P), cluster(C2 ,P),C1 ! = C2 .

Cluster must have at least one attribute value, except for UNKNOWN, C have at least one value

for the attribute att_Type in pass P.

cluster_has_att(C , att_Type,P)← attribute_agreement_for_stage(P),

19

noofcatt(C ,X , att_Type,P),X > 0 .

For the attribute att_Type, its values in C2 are also in C1 in pass P

attributeagreement(C1 ,C2 , att_Type,P)← not att_has_no_partner(C2 ,C1 ,P , att_Type),

cluster_has_att(C2 , att_Type,P),

cluster(C1 ,P), attribute(att_Type),

attribute_agreement_for_stage(P),

cluster(C2 ,P),C1 ! = C2 .

As attribute agreement will be used in several passes, this rule is used to activate attribute

agreement for those passes

attribute_agreement_for_stage(P).

2.4.3 Coreference Resolution Sieves

Ten independent models will be applied in sequence

Model 1: Speaker Identification.

In this pass the speakers will be linked to pronouns using the method in Baldwin (1995, 1997) [16].

In non–conversational text, it looks for for the subject of reporting verbs (tell,say...) in the sentence of

the quotation or its adjacent sentences. In conversational text, speakers are available in the data sets.

The detected speaker relations by Stanford are represented as ASP facts that specify that a mention

ID, has a speaker mention SID

speakerofmen(ID , SID).

The extracted speaker facts then can be used to implement the following [16]:

1. I pronouns that have the same speaker are coreferent [16]. For example “[I] am studying at

Marmara University, and [I] am working,”[she] said. The two (I)s mentions will be linked,

they have the same speaker she mention, so the mentions that are first person pronouns first-

personpronoun(M1), with singular number attribute attributeofmention(ID1,"number", "SIN-

GULAR"), and have same speaker will be linked.

link(ID1 , SID1 , 1)←mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

20

HW1 ,MT1 ,P1 ,NER1 , ISPR1), firstpersonpronoun(M1),

attributeofmention(ID1 , ”number”, ”SINGULAR”),

speakerofmen(ID1 , SID1), ID1 < SID1 , not prunemen(SID1).

2. The speaker and (I)s in her text are coreferent. The (I)s mentions and the she mention in the

previous example are linked .

link(ID1 , SID1 , 1)←mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

HW1 ,MT1 ,P1 ,NER1 , ISPR1), firstpersonpronoun(M1),

attributeofmention(ID1 , ”number”, ”SINGULAR”),

speakerofmen(ID1 , SID1), ID1 < SID1 , not prunemen(SID1).

3. You pronouns that have the same speaker are coreferent . “[I] invited [you], and [you] did

not come,”[he] said. The two (you)s mentions will be linked, they have the same speaker he

mention, so the mentions that are second person pronouns secondpersonpronoun(M1), and have

the same speaker are linked.

link(ID1 , ID2 , 1)←mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

HW1 ,MT1 ,P1 ,NER1 , ISPR1), secondpersonpronoun(M1),

mention(M2 , ID2 , SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,

HW2 ,MT2 ,P2 ,NER2 , ISPR2), secondpersonpronoun(M2),

speakerofmen(ID1 , SID1), speakerofmen(ID2 , SID2),

SID1 == SID2 , ID1 ! = ID2 , ID1 < ID2 .

4. Link mentions that are speakers, and have the same text

speaker(SID)← speakerofmen(ID , SID).

mentiontext(ID1 ,M1)←mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,

G1 ,HW1 ,MT1 ,P1 ,NER1 , ISPR1).

link(SID1 , SID2 , 1)← speaker(SID1), speaker(SID2),

mentiontext(SID1 ,M1),mentiontext(SID2 ,M2),

M1 == M2 , SID1 ! = SID2 ,

nominal(SID1), nominal(SID2).

21

5. Link nominal speaker mentions with mentions that have same text

link(SID , ID1 , 1)← speaker(SID),mentiontext(ID1 ,M1),

mentiontext(SID ,M1), nominal(SID).

Model 2: Exact Match.

Two nominal mentions with the same extent text including modifiers and determiners are linked in

this model [16]. For example

mention(”the sony product”, 14 , 1 , ”INANIMATE”, 6 , 9 , ”NEUTRAL”,

”product”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

mention(”the sony product”, 20 , 3 , ”INANIMATE”, 8 , 11 , ”NEUTRAL”,

”product”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

Nominal mentions with the same text M will be linked

link(ID1 , ID2 , 2)←mention(M , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

HW1 ,T1 ,P1 ,NER1 , ISPR1), ID1 < ID2 ,

mention(M , ID2 , SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,

HW2 ,T2 ,P2 ,NER2 , ISPR2), nominal(ID1), nominal(ID2).

Model 3: Relaxed String Match.

Nominal mentions are linked if their texts that have been gotten after deleting the words come after

their head words (e.g. relative clauses, participial post modifiers,..) are the same [16]. For example

mention(”the man, who won the contest”, 4 , 0 , ”ANIMATE”, 4 , 11 ,

”MALE”, ”man”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

mention(”the man”, 5 , 0 , ”ANIMATE”, 4 , 6 , ”MALE”,

”man”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

Text of the mention ID after dropping words following its head word Mnew

removephraseafterheadmen(ID ,Mnew).

For the above two mentions we get

removephraseafterheadmen(4 , ”the man”).

22

removephraseafterheadmen(5 , ”the man”).

Link the mentions

link(ID1 , ID2 , 3)← removephraseafterheadmen(ID1 ,M),

removephraseafterheadmen(ID2 ,M), nominal(ID1),

nominal(ID2), firstmenofclu(ID2 , 2 ,C2),

ID1 < ID2 , notprune(ID2 , 2 ,C2).

Model 4: Precise Constructs

Two mentions are linked, if any of the following situations occurred[16], each condition can be con-

sidered as sub model of the main model (4th model). As the third argument in the atom link(ID1,ID2,Pass)

indicates the model in which the mentions have been linked, in this model we indicate both the main

model with number 4, and the sub model number which goes from (1 to 6)

link(ID1 , ID2 , 4SubModelNO).

link(5 , 8 , 43).

1. Appositive: the two nominal mentions have an appositive relation. Stanford have been used to

detect appositive using Haghighi and Klein (2009) definition: third child of a parent NP whose

expansion begins with (NP, NP), with no conjunction in the expansion [16]. For example,

‘‘[Istanbul city], [the capital of Turkey], is so beautiful. ”. The mentions have appositive

relation

mention(”istanbul city , the capitaof turkey”, 9 , 1 , ”INANIMATE”, 0 , 2 ,

”NEUTRAL”, ”city”, ”PROPER”, ”UNKNOWN ”, ”LOCATION ”, ”SINGULAR”).

mention(”the capital of turkey”, 10 , 1 , ”INANIMATE”, 3 , 7 ,

”NEUTRAL”, ”capital”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

appositive(9 , 10).

Link mentions if they have appositive relation appositive(ID1,ID2), and there are attribute

agreements over all attribute of their clusters.

attribute_agreement_for_stage(3).

appositive(ID2 , ID1)← appositive(ID1 , ID2).

23

appositive(ID1 , ID3)← appositive(ID1 , ID2), appositive(ID2 , ID3),

ID1 ! = ID2 , ID2 ! = ID3 , ID1 ! = ID3 .

link(ID1 , ID2 , 41)← appositive(ID1 , ID2), firstmenofclu(ID2 , 3 ,C2),

ID1 < ID2 , notprune(ID2 , 3 ,C2), notsamecluster(ID1 , ID2 , 3),

attributeagreement(C1 ,C2 , ”number”, 3), incluster(ID1 , 3 ,C1),

attributeagreement(C1 ,C2 , ”animacy”, 3),

attributeagreement(C1 ,C2 , ”gender”, 3),

attributeagreement(C1 ,C2 , ”ner”, 3),

attributeagreement(C1 ,C2 , ”person”, 3).

2. Predicate nominative : the mentions are in a copulative subject–object relation [16]. For exam-

ple “[Marmara University] is [one of the oldest educational institutions].”, the mentions

mention(”marmara university”, 4 , 1 , ”INANIMATE”, 0 , 2 , ”NEUTRAL”,

”university”, ”PROPER”, ”UNKNOWN ”, ”ORGANIZATION ”, ”UNKNOWN ”).

mention(”one of the oldest educational institutions”, 6 , 1 , ”INANIMATE”, 4 , 10 ,

”UNKNOWN ”, ”one”, ”PROPER”, ”UNKNOWN ”, ”NUMBER”, ”SINGULAR”).

predicatenominative(6 , 4).

Link mentions if they have predicate nominative relation predicatenominative (ID1,ID2), and

there are attribute agreements over all attributes of their clusters.

attribute_agreement_for_stage(41).

predicatenominative(ID2 , ID1)← predicatenominative(ID1 , ID2).

predicatenominative(ID1 , ID3)← predicatenominative(ID1 , ID2),

predicatenominative(ID2 , ID3),

ID1 ! = ID2 , ID2 ! = ID3 , ID1 ! = ID3 .

link(ID1 , ID2 , 42)← predicatenominative(ID1 , ID2),

firstmenofclu(ID2 , 41 ,C2),

ID1 < ID2 , notprune(ID2 , 41 ,C2),

notsamecluster(ID1 , ID2 , 41),

attributeagreement(C1 ,C2 , ”number”, 41),

attributeagreement(C1 ,C2 , ”animacy”, 41),

24

attributeagreement(C1 ,C2 , ”gender”, 41),

attributeagreement(C1 ,C2 , ”ner”, 41),

attributeagreement(C1 ,C2 , ”person”, 41),

incluster(ID1 , 41 ,C1).

3. Role appositive:the candidate antecedent is a modifier in an NP whose head is the current men-

tion, and its head word is noun [16]. For example, “[[Architect] Sinan] is considered as the

greatest Ottoman architect of the Ottoman Empire’s Architectural heritage.”, and the mentions

mention(”architect sinan”, 64 , 18 , ”ANIMATE”, 0 , 2 , ”MALE”,

”sinan”, ”PROPER”, ”UNKNOWN ”, ”PERSON ”, ”SINGULAR”).

mention(”architect”, 65 , 18 , ”ANIMATE”, 0 , 1 , ”MALE”,

”architect”, ”PROPER”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

roleappositive(64 , 65).

attribute_agreement_for_stage(42).

link(ID1 , ID2 , 43)← roleappositive(ID1 , ID2), firstmenofclu(ID2 , 42 ,C2),

ID1 < ID2 , notprune(ID2 , 42 ,C2), notsamecluster(ID1 , ID2 , 42),

attributeagreement(C1 ,C2 , ”number”, 42),

attributeagreement(C1 ,C2 , ”animacy”, 42),

attributeagreement(C1 ,C2 , ”gender”, 42),

attributeagreement(C1 ,C2 , ”ner”, 42),

attributeagreement(C1 ,C2 , ”person”, 42), incluster(ID1 , 42 ,C1).

4. Relative pronoun: the mention is a relative pronoun, and it modifies the head of the antecedent

NP [16]. For example, “[the finance street [which] has already formed in the Waitan district]...”

mention(”the new museum which has already opened in Istanbul

city”, 71 , 20 , ”INANIMATE”, 0 , 11 , ”MALE”,

”museum”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

mention(”which”, 72 , 20 , ”INANIMATE”, 3 , 4 , ”MALE”, ”museum”,

”PRONOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

relativepronoun(71 , 72).

25

Rules

link(ID1 , ID2 , 44)← relativepronoun(ID1 , ID2), firstmenofclu(ID2 , 43 ,C2),

ID1 < ID2 , notprune(ID2 , 43 ,C2), notsamecluster(ID1 , ID2 , 43).

5. Acronym: One of the mentions is an acronym of the other, and both are taged as NNP [16]. For

example, United Nations and UN .

link(ID1 , ID2 , 45)← acronym(ID1 , ID2), firstmenofclu(ID2 , 44 ,C2),

ID1 < ID2 , notprune(ID2 , 44 ,C2), notsamecluster(ID1 , ID2 , 44).

6. Demonym: one of the mentions is a demonym of the other. For demonym detection Wikipedia

static list of countries and their gentilic have been used [16], for example, Syria, and Syrian.

link(ID1 , ID2 , 46)← demonym(ID1 , ID2), firstmenofclu(ID2 , 45 ,C2),

ID1 < ID2 , notprune(ID2 , 45 ,C2), notsamecluster(ID1 , ID2 , 45).

Model 5: Strict Head Match

Linking two mentions if they have the same head word, and ignoring the possibility that they might

have incompatible modifiers can generate many wrong links. To overcome this issue, many conditions

must be all considered to link mentions with the same head word [19].

1. Entity head match: the head word of the mention to be considered matches the head word of

any mention in the antecedent entity (cluster) [16]. For example

mention(”architect , mimar sinan”, 7 , 1 , ”ANIMATE”, 0 , 4 , ”MALE”,

”architect”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

mention(”mimar sinan”, 4 , 1 , ”ANIMATE”, 2 , 4 , ”MALE”, ”sinan”,

”PROPER”, ”UNKNOWN ”, ”PERSON ”, ”SINGULAR”).

mention(”sinan”, 11 , 2 , ”ANIMATE”, 0 , 1 , ”MALE”, ”sinan”,

”PROPER”, ”UNKNOWN ”, ”PERSON ”, ”SINGULAR”).

incluster(11 , 4 , 10).

incluster(7 , 4 , 3).

incluster(4 , 4 , 3).

26

Head match will be detected between the mentions

headmatch(11 , 7 , 51).

headmatch(11 , 4 , 51).

And the head match link

headmatch(ID1 , ID2 , 51)← ID1 < ID2 , firstmenofclu(ID2 , 4 ,C2),

notprune(ID2 , 4 ,C2), hwmen(ID2 ,HW), hwsc(C1 ,HW , 4),

incluster(ID1 , 4 ,C1), nominal(ID1), nominal(ID2).

2. Word inclusion: the non-stop word set of the current entity (mention’s cluster) is a subset of

the non-stop words set of the antecedent entity [16]. The list of non-stop words that have been

considered in Stanford

(”a”, ”an”, ”the”, ”of ”, ”at”, ”on”, ”upon”, ”in”, ”to”, ”from”, ”out”, ”as”, ”so”,

”such”, ”or”, ”and”, ”those”, ”this”, ”these”, ”that”, ”for”, ”, ”, ”is”, ”was”, ”am”,

”are”, ”′s”, ”been”, ”were”, ”mr .”, ”miss”, ”mrs .”, ”dr .”, ”ms .”, ”inc.”, ”ltd .”, ”corp.”)

For example the mentions are linked

mention(”president recep tayyip erdogan”, 4 , 1 , ”ANIMATE”, 0 , 4 ,

”MALE”, ”erdogan”, ”PROPER”, ”UNKNOWN ”, ”PERSON ”, ”SINGULAR”).

incluster(4 , 4 , 3).

word(4 , ”president”, 0 , ”nonstop”, 7).

word(4 , ”recep”, 1 , ”nonstop”, 8).

word(4 , ”tayyip”, 2 , ”nonstop”, 9).

word(4 , ”erdogan”, 3 , ”nonstop”, 10).

mention(”the president”, 7 , 2 , ”ANIMATE”, 0 , 2 , ”MALE”, ”president”,

”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

incluster(7 , 4 , 5).

word(7 , ”the”, 0 , stop”, 14).

word(7 , ”president”, 1 , ”nonstop”, 15).

As the word inclusion are considered in several passes, this rule is used to activate it for those

passes

word_inclusion_for_stage(P)

27

Nonstop words W of the cluster C in pass P

nonswofclu_(W ,C ,P)←word_inclusion_for_stage(P),

incluster(ID ,P ,C),word(ID ,W ,WS , ”nonstop”,WSS).

Number of nonstop words of a cluster C in pass P

nonswocc(C ,X ,P)←word_inclusion_for_stage(P), cluster(C ,P),

X = #count{W ,C ,P : nonswofclu_(W ,C ,P)}.

For pairs of distinct clusters C1, C2 and nonstop word W that occur in both clusters in pass P

nonsw_has_partner(C1 ,C2 ,W ,P)←word_inclusion_for_stage(P),

nonswofclu_(W ,C1 ,P), nonswofclu_(W ,C2 ,P),

cluster(C1 ,P), cluster(C2 ,P),C1 ! = C2 .

Nonstop word has no partner i.e. word W is in cluster C1 but not in cluster C2 in pass P

nonsw_has_no_partner_w(C1 ,C2 ,W ,P)←word_inclusion_for_stage(P),

nonswofclu_(W ,C1 ,P),C1 ! = C2 ,

notnonsw_has_partner(C1 ,C2 ,W ,P),

cluster(C1 ,P), cluster(C2 ,P).

If there is a nonstop word that is in C1 but not in C2

nonsw_has_no_partner(C1 ,C2 ,P)←word_inclusion_for_stage(P),

nonsw_has_no_partner_w(C1 ,C2 , _,P),

cluster(C1 ,P), cluster(C2 ,P),C1 ! = C2 .

Cluster of the mention must have at least one nonstop word

cluster_has_nonsw(C ,P)←word_inclusion_for_stage(P),

nonswocc(C ,X ,P),X > 0 .

Activation of word inclusion for clusters in 4th pass, and linking the mentions

word_inclusion_for_stage(4).

linkwordinclusion(ID1 , ID2 , 52)firstmenofclu(ID2 , 4 ,C2), ID1 < ID2 ,

not nonsw_has_no_partner(C2 ,C1 , 4),

cluster_has_nonsw(C2 , 4), incluster(ID1 , 4 ,C1).

28

3. Compatible modifiers only: This condition focuses on the two individual mentions not the en-

tities, i.e. the mention’s modifier set is included in the modifier set of the other mention. Com-

patible modifiers will be satisfied if the modifiers of any mention in the entity of the mention

to be considered are contained in the modifiers of any mention in the antecedent candidate’s

entity.

mention(”several major cities in the last week”, 10 , 1 , ”INANIMATE”,

12 , 19 , ”UNKNOWN ”, ”cities”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”PLURAL”).

mod(10 , 1 , ”the”, ”DT”).

mod(10 , 2 , ”last”, ”JJ”).

mod(10 , 3 , ”week”, ”NN ”).

mod(10 , 4 , ”several”, ”JJ”).

mod(10 , 5 , ”major”, ”JJ”).

mention(”the last week”, 11 , 1 , ”INANIMATE”, 16 , 19 , ”UNKNOWN ”,

”week”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

mod(11 , 1 , ”the”, ”DT”).

mod(11 , 2 , ”last”, ”JJ”).

The atom linkmod(ID1,ID2) represents the compatible modifier relation between mentions ID1,

and ID2.

Noun and adjective modifiers of the mention

nounadjmod(ID , S)←mod(ID , S ,MM ,T),T == (”NN ”; ”NNS”; ”NNP”;

”JJ”; ”JJR”; ”JJS”; ”CD”; ”VB”; ”VBD”;

”NNPS”; ”VBG”; ”VBN ”; ”VBP”; ”VBZ”).

Number of the modifiers (adjectives and nouns) of each mention

modomenc(ID2 ,X)←X = #count{ID2 , S2 ,MM2 ,T2 : mod(ID2 , S2 ,MM2 ,T2),

nounadjmod(ID2 , S2)} > 0 ,mention(M2 , ID2 ,

SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,HW2 ,MT2 ,P2 ,NER2 , ISPR2).

The modifier MM2 of the mention ID2 to be solved is found in the modifier set of ID1

foundmod(ID1 ,MM2 , S2 ,T2 , ID2 , 53)←mod(ID1 , S1 ,MM1 ,T1),

29

mod(ID2 , S2 ,MM2 ,T2),

nounadjmod(ID1 , S1), nounadjmod(ID2 , S2),

MM1 == MM2 , ID1 < ID2 ,

not samecluster(ID1 , ID2 , 4).

Number of modifiers of the mention ID2 that are found in the modifier set of ID1

exactmodc(ID1 , ID2 ,C , 53)←C = #count{ID1 ,MM2 , S2 ,T2 , ID2 , 53 :

foundmod(ID1 ,MM2 , S2 ,T2 , ID2 , 53)} > 0 ,

notsamecluster(ID1 , ID2 , 4),

mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,HW1 ,

MT1 ,P1 ,NER1 , ISPR1),mention(M2 , ID2 , SN2 ,

ANIM2 , SI2 ,EI2 ,G2 ,HW2 ,MT2 ,P2 ,NER2 , ISPR2).

All the modifiers of the mention ID2 are found in the modifier set of ID1, the mentions are

linked

linkmod(ID1 , ID2)← exactmodc(ID1 , ID2 ,Y),modomenc(ID2 ,Y),

nominal(ID1), nominal(ID2).

Compatible modifiers only for a pass will be satisfied if we have linkmod(IDX,IDY) between at

least two mentions IDY form the mention’s cluster, and IDX from the antecedent candidate’s

cluster, four cases have been considered

• linkmod(IDX,IDY) between the mention, and its antecedent candidate

linkmodfinal(ID1 , ID2 , 53)← linkmod(ID1 , ID2), nominal(ID1),

nominal(ID2), firstmenofclu(ID2 , 4 ,C2),

not prune(ID2 , 4 ,C2), ID1 < ID2 ,

notsamecluster(ID1 , ID2 , 4), headmatch(ID1 , ID2 , 51).

• linkmod(IDX,IDY) between the mention, and one mention in the antecedent candidate’s

cluster other than the antecedent candidate.

linkmodfinal(ID1 , ID2 , 53)← linkmod(ID3 , ID2), samecluster(ID1 , ID3 , 4),

notsamecluster(ID1 , ID2 , 4), ID3 ! = ID1 ,

30

nominal(ID1), nominal(ID2),

firstmenofclu(ID2 , 4 ,C2),

notprune(ID2 , 4 ,C2), ID1 < ID2 ,

headmatch(ID1 , ID2 , 51).

• linkmod(IDX,IDY) between a mention form the cluster of the mention to be solved, and its

antecedent candidate

linkmodfinal(ID1 , ID2 , 53)← linkmod(ID1 , ID4),

samecluster(ID2 , ID4 , 4),

notsamecluster(ID1 , ID2 , 4), ID4 ! = ID2 ,

nominal(ID1), nominal(ID2),

firstmenofclu(ID2 , 4 ,C2),

notprune(ID2 , 4 ,C2), ID1 < ID2 ,

headmatch(ID1 , ID2 , 51).

• linkmod(IDX,IDY) between two mentions from the clusters of the mention to be solved,

and its antecedent candidate other than those two mentions

linkmodfinal(ID1 , ID2 , 53)← linkmod(ID3 , ID4), samecluster(ID2 , ID4 , 4),

samecluster(ID1 , ID3 , 4), nominal(ID1),

not samecluster(ID1 , ID2 , 4), nominal(ID2),

ID4 ! = ID2 , ID3 ! = ID1 ,

firstmenofclu(ID2 , 4 ,C2), notprune(ID2 , 4 ,C2),

ID1 < ID2 , headmatch(ID1 , ID2 , 51).

4. Not i-within-i : i-within-i construct means one mention is a child NP in the other’s NP con-

stituent [16].

mention(”the spirit of the people”, 6 , 2 , ”INANIMATE”, 6 , 11 , ”NEUTRAL”,

”spirit”, ”NOMINAL”, ”UNKNOWN ”, ”O”, ”SINGULAR”).

mention(”the people”, 7 , 2 , ”ANIMATE”, 9 , 11 , ”UNKNOWN ”, ”people”,

”NOMINAL”, ”UNKNOWN ”, ”O”, ”PLURAL”).

31

If one mention is a child NP in the others NP constituent from Stanford we got the fact

includedin(ID1 , ID2).

includedin(6 , 7).

Mentions ID1, and ID2 must not have appositive, relative pronoun, or role appositive (men-

tioned in model 4) relation.

norelation(ID1 , ID2)← not appositive(ID1 , ID2), not appositive(ID2 , ID1),

not relativepronoun(ID1 , ID2), not relativepronoun(ID2 , ID1),

notroleappositive(ID1 , ID2), notroleappositive(ID2 , ID1),

mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

HW1 ,MT1 ,P1 ,NER1 , ISPR1),mention(M2 , ID2 , SN2 ,

ANIM2 , SI2 ,EI2 ,G2 ,HW2 ,MT2 ,P2 ,NER2 , ISPR2),

ID1 ! = ID2 .

And the mentions have i-within-i

linkiwi(ID1 , ID2 , 54)← firstmenofclu(ID2 , 4 ,C2), ID1 < ID2 ,

norelation(ID1 , ID2), headmatch(ID1 , ID2 , 51),

includedin(ID1 , ID2), nominal(ID1), nominal(ID2),

not prune(ID2 , 4 ,C2), not samecluster(ID1 , ID2 , 4).

If the above four constraints are satisfied, the mention and its antecedent candidate are linked

link(ID1 , ID2 , 5)← headmatch(ID1 , ID2 , 51), linkwordinclusion(ID1 , ID2 , 52),

linkmodfinal(ID1 , ID2 , 53), notlinkiwif (ID1 , ID2 , 54).

Models 6 and 7: Variants of Strict HeadMatch

These models are different relaxations of the conditions in model 5, where in model 6 there is no

compatible modifiers only condition [16] i.e.

link(ID1 , ID2 , 6)← headmatch(ID1 , ID2 , 61),

linkwordinclusion(ID1 , ID2 , 62), not linkiwif (ID1 , ID2 , 63).

And model 7 removes the word inclusion constraint[16] i.e.

link(ID1 , ID2 , 7)← headmatch(ID1 , ID2 , 71), linkmodfinal(ID1 , ID2 , 72),

32

notlinkiwif (ID1 , ID2 , 73).

Model 8: Proper Head Word Match

Mentions that their head words are proper nouns are linked if they have the same head word and

satisfy the following conditions [16]:

• Are not in i-within-i

• No location mismatches: all the location named entities, proper nouns of the mention to be

considered are included in those of the antecedent candidate

• No numeric mismatches : all the number of the mention to be considered are included in those

of the antecedent candidate.

Mention ID with a proper noun head word

properheadwordmen(ID)← headwordtype(ID ,T),T == (”nnp”; ”nnps”).

Mentions with the same proper noun head word

sameproperheadwordmens(ID1 , ID2)← hwmen(ID2 ,HW), hwmen(ID1 ,HW),

properheadwordmen(ID1), properheadwordmen(ID2),

not samecluster(ID1 , ID2 , 7), ID1 < ID2 ,

firstmenofclu(ID2 , 7 ,C2), not prune(ID2 , 7 ,C2).

For the no location mismatches condition between mentions, location mismatch can happen in two

cases

1. If the head word of one mention is "country" or "nation", and the other mention text is a name

of state, or an abbreviation of state name, the atom statemencountrymen(ID1,ID2) are used to

indicate that between mentions. Stanford have been used to get facts to indicate if the mention

is state or abbreviation of state name

stateorabb(ID).

statemencountrymen(ID1 , ID2)← stateorabb(ID1), hwmen(ID2 ,HW),

HW == (”country”; ”nation”).

33

2. Location modifiers of one mention are not included in the other mention location modifiers, the

strategy that have been used in compatible modifier only (in model 5) have been used here, i.e.

matching location modifier and counting the matches between mentions. Location modifiers of

a mention ID

loactionmod(ID , S)←mod(ID, S,MM,POS),

loctagofmod(ID , S ,LOCT),LOCT == ”LOCATION ”.

Counting of mention’s location modifiers

locmodomenc(ID2 ,X)←X = #count{ID2 , S2 ,MM2 ,T2 :

mod(ID2 , S2 ,MM2 ,T2), loactionmod(ID2 , S2)},

mention(M2 , ID2 , SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,

HW2 ,MT2 ,P2 ,NER2 , ISPR2).

Location modifier of the mention has a match in the other mention’s modifiers

foundlocmod(ID1 ,MM2 , S2 ,T2 , ID2)←mod(ID1 , S1 ,MM1 ,T1),mod(ID2 , S2 ,MM2 ,T2),

loactionmod(ID1 , S1), loactionmod(ID2 , S2),

MM1 == MM2 , notsamecluster(ID1 , ID2 , 7),

ID1 ! = ID2 .

Counting location modifier matches between mentions

exactlocmodc(ID1 , ID2 ,C)←C = #count{ID1 ,MM2 , S2 ,T2 , ID2 :

foundlocmod(ID1 ,MM2 , S2 ,T2 , ID2)},

mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

HW1 ,MT1 ,P1 ,NER1 , ISPR1),

mention(M2 , ID2 , SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,

HW2 ,MT2 ,P2 ,NER2 , ISPR2), ID1 ! = ID2 .

Location modifiers of one mention are included in location modifier of the other mention

linkmodlocation(ID1 , ID2)← exactlocmodc(ID1 , ID2 ,X), locmodomenc(ID2 ,X),

nominal(ID1), nominal(ID2), not prune(ID2 , 7 ,C2),

not statemencountrymen(ID1 , ID2), , ID1 < ID2

34

sameproperheadwordmens(ID1 , ID2),

not samecluster(ID1 , ID2 , 7), firstmenofclu(ID2 , 7 ,C2).

No proper nouns modifier mismatches: the same strategy as in location mismatch.

proper noun modifiers

propermod(ID , S)←mod(ID , S ,MM ,T),T == (”NNP”; ”NNPS”).

Counting the proper noun modifiers

propermodomenc(ID2 ,X)←X = #count{ID2 , S2 ,MM2 ,T2 :

mod(ID2 , S2 ,MM2 ,T2), propermod(ID2 , S2)},

mention(M2 , ID2 , SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,HW2 ,

MT2 ,P2 ,NER2 , ISPR2).

Matching proper noun modifiers

foundpropermod(ID1 ,MM , S2 ,T2 , ID2)←mod(ID1 , S1 ,MM ,T1),

mod(ID2 , S2 ,MM ,T2), propermod(ID1 , S1),

propermod(ID2 , S2), ID1 ! = ID2 ,

notsamecluster(ID1 , ID2 , 7).

Counting proper noun modifier matches between mentions

exactpropermodc(ID1 , ID2 ,C)←C = #count{ID1 ,MM2 , S2 ,T2 , ID2 :

foundpropermod(ID1 ,MM2 , S2 ,T2 , ID2)},

mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

HW1 ,MT1 ,P1 ,NER1 , ISPR1).

Proper noun modifiers of one mention are included in the other mention location modifier

linkmodproperlocation(ID1 , ID2)← xactpropermodc(ID1 , ID2 ,Y),

propermodomenc(ID2 ,X),Y == X , nominal(ID1),

nominal(ID2), linkmodlocation(ID1 , ID2),

firstmenofclu(ID2 , 7 ,C2), notprune(ID2 , 7 ,C2),

ID1 < ID2 , not samecluster(ID1 , ID2 , 7).

35

No numeric mismatches: same as location modifiers and noun proper modifiers. Mentions have to be

in the same sentence, with word distance less than six .

linkmensdistance(ID1 , ID2)←−mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,

EI1 ,G1 ,HW1 ,MT1 ,P1 ,NER1 , ISPR1),

mention(M2 , ID2 , SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,

HW2 ,MT2 ,P2 ,NER2 , ISPR2), SN1 == SN2 ,

|SI2 − SI2 | < 6 , firstmenofclu(ID2 , 7 ,C2), ID1 < ID2 ,

not prune(ID2 , 7 ,C2), not samecluster(ID1 , ID2 , 7),

sameproperheadwordmens(ID1 , ID2).

Mentions are linked if all the previous conditions are satisfied with attribute agreement between clus-

ters of the mentions

attribute_agreement_for_stage(7).

link(ID1 , ID2 , 8)← linkmensdistance(ID1 , ID2), linkmodnumber(ID1 , ID2),

linkmodproperlocation(ID1 , ID2), not linkiwi(ID1 , ID2 , 81),

attributeagreement(C1 ,C2 , ”number”, 7),

incluster(ID1 , 7 ,C1),

attributeagreement(C1 ,C2 , ”animacy”, 7),

attributeagreement(C1 ,C2 , ”gender”, 7),

attributeagreement(C1 ,C2 , ”ner”, 7),

attributeagreement(C1 ,C2 , ”person”, 7).

Model 9: Relaxed Head Match

Both mentions are labeled as named entities from the same type, and the head word of the mention

matches any word in the antecedent entity. Also this model implements a combination of those

conditions with not i-within-i and word Inclusion [16].

Head word of the mention hwmen(ID2,HW) matches a word wofclu(HW,WS,C1,8) in the antecedent

candidate’s cluster

headwmatchw(ID1 , ID2)← hwmen(ID2 ,HW),wofclu(HW ,WS ,C1 , 8),

not samecluster(ID1 , ID2 , 8), ID1 < ID2 ,

firstmenofclu(ID2 , 8 ,C2), incluster(ID1 , 8 ,C1),

36

notprune(ID2 , 8 ,C2).

Mentions are labeled as names entities, and have the same type

samenamedentitymens(ID1 , ID2)←mention(M1 , ID1 , SN1 ,ANIM1 , SI1 ,EI1 ,G1 ,

HW1 ,MT1 ,P1 ,NER1 , ISPR1),mention(M2 , ID2 ,

SN2 ,ANIM2 , SI2 ,EI2 ,G2 ,HW2 ,MT2 ,P2 ,

NER2 , ISPR2),NER1 ! = ”O”,NER2 ! = ”O”,

not samecluster(ID1 , ID2 , 8),

not prune(ID2 , 8 ,C2), ID1 < ID2 ,NER1 == NER2 ,

firstmenofclu(ID2 , 8 ,C2), headwmatchw(ID1 , ID2).

Mentions are linked if the mentioned conditions are all satisfied

link(ID1 , ID2 , 9)← samenamedentitymens(ID1 , ID2),

linkwordinclusion(ID1 , ID2 , 92), not linkiwi(ID1 , ID2 , 91).

Model 10: Pronominal Coreference

All the previously mentioned models do coreference between nominal mentions except for model

1, model 4. But that does not mean that the Sieve system ignores pronominal coreference. The

mentioned nine models make the system ready for this model through building precise clusters with

shared mention attributes, which is so important for pronominal coreference [16], Distance between

the two mentions must be at most 3 sentences.

Sentence of the mention

mensen(ID , SN)←mention(M , ID , SN ,ANIM , SI ,EI ,G ,HW ,T ,P ,NER, ISPR).

Activate the attribute agreement for model 9

attribute_agreement_for_stage(9).

Link pronouns with nominal antecedent candidate, if there are agreements in every attribute between

them

link(ID1 , ID2 , 10)← ID1 < ID2 , notsamecluster(ID1 , ID2 , 9),

firstmenofclu(ID2 , 9 ,C2), pronominal(ID2), nominal(ID1),

37

attributeagreement(C1 ,C2 , ”number”, 9),

attributeagreement(C1 ,C2 , ”animacy”, 9),

attributeagreement(C1 ,C2 , ”gender”, 9),

attributeagreement(C1 ,C2 , ”ner”, 9),

attributeagreement(C1 ,C2 , ”person”, 9),

incluster(ID1 , 9 ,C1),mensen(ID1 , SN1),mensen(ID2 , SN2),

SN2 − SN1 < 4 , incluster(ID2 , 9 ,C2).

Link pronouns with pronominal antecedent candidate, if there is an agreement in all attribute except

for the person attribute

link(ID1 , ID2 , 10)← ID1 < ID2 , notsamecluster(ID1 , ID2 , 9),

firstmenofclu(ID2 , 9 ,C2), pronominal(ID2), pronominal(ID1),

attributeagreement(C1 ,C2 , ”number”, 9),

attributeagreement(C1 ,C2 , ”animacy”, 9),

attributeagreement(C1 ,C2 , ”gender”, 9),

attributeagreement(C1 ,C2 , ”ner”, 9),

incluster(ID1 , 9 ,C1),mensen(ID1 , SN1),

mensen(ID2 , SN2), SN2 − SN1 < 4 , incluster(ID2 , 9 ,C2).

Cluster of the mentions that are linked according to a model will be merged, merge is an equivalence

relation, i.e. it is reflexive, transitive, and symmetric.

mergecluster(C1 ,C2 , SN)← nextStage(S , SN), incluster(MI1 , S ,C1),

incluster(MI2 , S ,C2), link(MI1 ,MI2 , S),C1 < C2 .

mergecluster(C1 ,C2 , S)←mergecluster(C2 ,C1 , S), activatePass(S).

mergecluster(C1 ,C1 , S)←mergecluster(C1 , _, S), activatePass(S).

mergecluster(C1 ,C3 , S)←mergecluster(C1 ,C2 , S),mergecluster(C2 ,C3 , S),

C1 < C2 ,C2 < C3 , activatePass(S).

We identify the lexicographically smallest element of the equivalence relation, and we define atoms

of form mergeInto(Ct,Cs) for source clusters Cs that are merged into target clusters Ct.

mergeBelow(C2)←mergeCluster(C1 ,C2),C1 < C2 .

38

mergeInto(Ct ,Cs)←mergeCluster(Ct ,Cs), not mergeBelow(Ct).

Clusters that will cease to exist in model S.

abandonCluster(S ,COld)← activatePass(S),CNew < COld ,

mergeInto(CNew ,COld , S).

Clusters that have been extended i.e. merged with other clusters

incluster(MI , SN ,CNew)← incluster(MI , S ,COld),

mergeInto(CNew ,COld , SN),

activatePass(SN), nextStage(S , SN).

Unchanged clusters in model S.

incluster(MI , SN ,COld)← activatePass(SN), nextStage(S , SN),

notabandonCluster(SN ,COld),

incluster(MI , S ,COld).

39

Chapter 3

Results and Discussion

3.1 CORPORA

We used OntoNotes-Dev – development partition of OntoNotes v 5.0 [28] corpora for develop-

ment and formal evaluation. The OntoNotes project [28] is a collaborative annotation effort conducted

by BBN Technologies and several universities, the goal was to annotate large corpus from various

genres with syntax, propositional structure, named entities and word senses, as well as coreference

resolution.

The OntoNotes coreference annotation view files (.coref files) are our input files, those files are

formatted using in-line annotation. XML tag called COREF, and were used to indicate the beginning

and the end of the mentions that should be linked, with ID attribute indicating the ID of the chain that

contains the linked mentions see figure 3.1 . Coreference view follows the Treebank tokenization, and

also includes the trace and empty category elements (“*”, “*-2”, and “*-1”) found in the Treebank

analysis, since those can also participate in the coreference chains.

3.2 EVALUATION

We used four evaluation metrics B 3 (Bagga and Baldwin 1998), CEAF (Constrained Entity

Aligned F-measure), MUC (Vilain et al. 1995), BLANC (BiLateral Assessment of NounPhrase

Coreference),and CoNLLF1 to compare our ASP Sieve with the Stanford Sieve. The official CoNLL

scorer v8.01 (CoNLL2011 shared task Pradhan et al. 2011) have been used, it takes as input CoNLL

41

Figure 3.1: OntoNotes coreference annotation view

42

files. In general CoNLL file contains a representation of all the OntoNotes layers in the CoNLL style

tabular format one line per token, where the last column represents coreference information. The

columns in the CoNLL file are [23] figure 3.2

1. Document ID.

2. Part number: Some documents have several texts.

3. Word number: word index in the sentence.

4. The word.

5. Word’s part of speech.

6. Parse bit: Bracketed structure broken before the first open parenthesis in the parse, and the

word/part-of-speech leaf replaced with a *.

7. Predicate lemma: is mentioned if we have the semantic role information of the row if not the

rows are marked with a -.

8. Predicate Frameset ID: The PropBank frameset ID of the predicate in Column 7.

9. Word sense.

10. Author/Speaker.

11. Named Entities.

12. Predicate Arguments: There is one column each of predicate argument structure information

for the predicate mentioned in Column 7.

13. Coreference: Coreference chain ID.

The scorer does not need all the columns to work, it needs just four columns (document ID, part

number, word itself, coreference).

3.3 ASP SIEVE IMPLEMENTATION

Figure 3.3 shows how our system works, as input we have OntoNotes coreference annotation view

files (.coref files), from which several things will be extracted

43

Figure 3.2: CoNLL file format

44

Figure 3.3: Our system

45

1. CoNLL file with no coreference column.

2. Mentions, their attributes, and their relations as .txt file. This file will be combined with our

ASP implementation of the Sieve, generating .LP file, this file will be given to the ASP Solver.

The Solver gives us as result .txt file. The file indicates in which cluster each mention ends up

with according to our ASP Sieve.

3. Coreference chains(clusters) form Stanford CoreNLP, these clusters indicates in which cluster

each mention ends up with according to Stanford CoreNLP.

Stanford CoreNLP tools contain a MUC format reader however this reader does not work on OntoNotes

data, neither does it work on original MUC6 or MUC7 corpora since an internal XML API changed.

As a result we had to implement three java tools to convert the results to CoNLL format in order to

compare them

1. Our ASP Sieve result to CoNLL file.

2. Stanford Sieve result to CoNLL file.

3. OntoNotes coreference annotation view(. coref files) to CoNLL file, this is the key file that

will be compared with the result files from our ASP Sieve and Stanford Sieve.

The scorer takes as input the three CoNLL files to give us the final scores for both our ASP Sieve, and

Stanford Sieve.

3.4 EXPERIMENTAL RESULTS

Our current prototype system performs coreference resolution with a logic program, and an ASP

solver. We have implemented all passes of the original Stanford CoreNLP deterministic coreference

resolution Sieve [16] in Answer Set Programming and made experiments on OntoNotes-Dev – de-

velopment partition [28]. Tables 3.1 show the the results from Stanford Sieve and our ASP Sieve,

regarding correctness of our approach we have not yet adjusted the ASP rules so that they fully cap-

ture the logic realized in the Stanford Java code. Currently we obtain a performance which is 5%

below the MUC-score of Stanford this is expected as we here just show the feasibility of doing the

Sieve fully declarative in ASP.

46

Models
MUC B3 CEAF BLANC

R P F1 R P F1 R P F1 R P F1

Stanford Model(1) 11.82 87.08 20.81 6.22 67.59 11.39 1.23 35.03 2.37 9.24 59.26 14.63

ASP Sieve Model(1) 3.5 88.05 6.73 1.31 86.19 2.58 1.23 35.03 2.37 1.94 78.82 3.77

Stanford+(2,3) 29.05 69.76 41.02 19 61.48 29.03 20.44 42.13 27.53 17.31 55.84 26.05

ASP Sieve+(2,3) 18.93 47.51 27.07 13.67 46.18 21.1 21.65 31.26 25.58 8.99 46.29 14.34

Stanford+(4,5,6,7) 35.09 56.26 41.22 26.4 48.54 34.2 31.18 39.33 34.79 22.26 46.82 30.17

ASP Sieve+(4,5,6,7) 23.59 41.73 30.14 19.28 39.57 25.92 27.93 32.81 30.18 11.2 36.4 16.64

Stanford+(8,9) 35.58 56.1 43.54 26.9 48.3 34.56 31.69 39.7 35.23 22.54 46.68 30.4

ASP Sieve+(8,9) 24.96 41.24 31.1 20.19 38.4 26.46 28.09 33.01 30.35 12.54 34.91 18.05

Stanford+(10) 57.89 55.8 56.83 45.73 47.23 46.47 46.72 41.11 43.74 47.08 47.67 46.92

ASP Sieve+(10) 53.2 50.21 51.66 37.31 42.68 39.82 37.83 33.41 35.48 40.28 39.45 39.46

Table 3.1: Experimental results

Figure 3.4 shows the distribution of time required to process documents in this experimental run:

from 355 documents, the majority was processed in less than 1 second; a few documents required

between 10 and 35 seconds which is slower than the Java implementation of the Sieve.

3.5 Conclusion

So far we encountered several challenges in this project and learned several important lessons:

• Rule-based Coreference Resolution uses a complex set of rules, that is hard to realize based on

scientific literature only, yet the available source code improves the situation.

• Answer Set Programming is a framework that allows for realizing all these rules in a natural

way, however for efficiency reasons we need encoding techniques that make the logic program

appear less natural;

• Performance in the deterministic case is reasonable, apart from few very big documents which

require around 30 seconds to process;

• Each tool and each corpus has its own data format, and converters rarely work without tweaking

them manually.

47

Figure 3.4: Required times (in seconds) for ASP reasoning in TEST portion of the English OntoNotes corpus, sorted by
the required time.

In the following we briefly discuss each of these points and provide an outlook on possible future

research directions.

Although the paper describing Stanford Sieve [16] is clearly written and very explicit, in several

cases important information has been omitted or formulated in an ambiguous way, such that it was

necessary to read the Java source code to improve correspondence of our ASP implementation with

Stanford. In fact, so far we were not able to fully reproduce the CoreNLP result on coreference in our

ASP Sieve, because we have not yet looked at the complete source code. We use the same input that

dcoref gets in ASP, so theoretically a 100% equal implementation should be possible. An example,

the constraint Compatible modifiers only which have been used in several models has the following

definition ”the mention’s modifiers are all included in the modifiers of the antecedent candidate...." In

our first implementation of this constraint we applied it to the mention to be solved, and its antecedent

candidate, but we have found in the Java code was so different, If the modifier of at least one mention

from the cluster of the mention to be solved are included in the modifier set of at least one mention

in the antecedent candidate’s cluster this constraint will be satisfied . Another example is attribute

agreement between cluster, according to [16], it can be understood that this constraints have been used

just in Pronominal Coreference Resolution (tenth model), but we found that it has been considered in

several models (fourth, eighth). We conclude that reproducibility is improved by providing source

code, but it would be better if the scientific description is precise enough to allow a nearly exact

reimplementation.

ASP is a very different style of programming compared to procedural languages like Java. Our

initial representation for the Sieve modules was beautiful but its performance was bad. That is mainly

48

because a naive implementation of Sieve modules and its preconditions in ASP rules will represent

all conditions for all layers, regardless of whether a layer requires such a condition or not. ASP is

usually applied to combinatorial optimization problems, where programs are small but very hard to

solve, different from what we do: large programs that are easy to solve. Therefore ASP does not

provide automatic optimization mechanisms that eliminate unused representations from the program.

Moreover debugging support for ASP is still in its infancy and also difficult to apply if answer sets

need post processing in Java to visualize the result. The Java Sieve implementation realizes rules us-

ing if statements and function calls, and some functions are only called if certain conditions are met.

In ASP we represent truth of conditions, instantiate rules if certain conditions are potentially true, and

this way obtain the result. This can be wasteful regarding the amount of represented conditions, and

appropriate encoding techniques can ameliorate this problem at the cost of making the logic program

less intuitive to read and harder to maintain. We chose ASP for using a formalism with nondeter-

minism that mirrors the ambiguity of natural language, and because ASP provides constructions for

connecting rules with knowledge, in particular semantic web knowledge, see, e.g. [10]. To use these

strengths of ASP, however, we first need to overcome more basic issues like optimizing encodings

to make them feasible for applications with large programs. We conclude that an important future

direction for such applications will be to automatically optimize (non-ground) ASP programs, a task

that recently gained increased attention in the community [6].

We found a standard coreference scorer software which uses the widely used CoNLL format,

however the OntoNotes corpus which is stored in MUC format does not contain a converter into

CoNLL format (it contains a Python API and other Python tools). Moreover the Stanford CoreNLP

tools contain a MUC format reader however this reader does not work on OntoNotes data. As a result

we implemented our own MUC-to-CoNLL converter.

3.6 Summary

Stanfords Sieve [16] is a deterministic approach to coreference resolution that combines the global

information and precise features of modern machine-learning models with the modularity of deter-

ministic, rule-based systems. In this work, we implemented the Stanford Sieve architecture using

computational logic. We represent the Sieve and its modules completely in the rule-based ASP

[9, 12, 18] formalism, which is a general purpose declarative logic programming formalism that

supports comfortable representation of knowledge, nonmonotonic reasoning processes, and reason-

49

ing with hybrid knowledge bases, and made experiments on the OntoNotes 5.0 corpus. Regarding

correctness of our approach we have not yet adjusted the ASP rules so that they fully match the logic

of Stanford Sieve Java code. Currently we obtain a performance which is 5% below the MUC-score

of Stanford Sieve.

50

Bibliography

[1] Alviano, M., Dodaro, C., Faber, W., Leone, N., Ricca, F.: Wasp: A native asp solver based

on constraint learning. In: International Conference on Logic Programming and Nonmonotonic

Reasoning. pp. 54–66. Springer (2013)

[2] Baral, C., Dzifcak, J.: Solving puzzles described in english by automated translation to answer

set programming and learning how to do that translation. arXiv preprint arXiv:1108.3850 (2011)

[3] Baral, C., Gelfond, G., Son, T.C., Pontelli, E.: Using answer set programming to model

multi-agent scenarios involving agents’ knowledge about other’s knowledge. In: Proceedings

of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume

1-Volume 1. pp. 259–266. International Foundation for Autonomous Agents and Multiagent

Systems (2010)

[4] Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communications

of the ACM 54(12), 92–103 (2011)

[5] Brooks, D.R., Erdem, E., Erdoğan, S.T., Minett, J.W., Ringe, D.: Inferring phylogenetic trees

using answer set programming. Journal of Automated Reasoning 39(4), 471–511 (2007)

[6] Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming. In: Interna-

tional Conference on Logic Programming and Nonmonotonic Reasoning. pp. 186–198. Springer

(2015)

[7] Delgrande, J.P., Grote, T., Hunter, A.: A general approach to the verification of cryptographic

protocols using answer set programming. In: International Conference on Logic Programming

and Nonmonotonic Reasoning. pp. 355–367. Springer (2009)

[8] Egly, U., Alice Gaggl, S., Woltran, S.: Answer-set programming encodings for argumentation

frameworks. Argument and Computation 1(2), 147–177 (2010)

51

[9] Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: A primer. In: Reasoning Web.

Semantic Technologies for Information Systems, pp. 40–110. Springer (2009)

[10] Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set pro-

gramming with description logics for the semantic web. Artificial Intelligence 172(12), 1495–

1539 (2008)

[11] Erdem, E., Yeniterzi, R.: Transforming controlled natural language biomedical queries into

answer set programs. In: Proceedings of the Workshop on Current Trends in Biomedical Natural

Language Processing. pp. 117–124. Association for Computational Linguistics (2009)

[12] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in practice. Synthesis

Lectures on Artificial Intelligence and Machine Learning 6(3), 1–238 (2012)

[13] Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider, M.: Potassco:

The potsdam answer set solving collection. Ai Communications 24(2), 107–124 (2011)

[14] Hirst, G.: Anaphora in natural language understanding (1981)

[15] Law, M., Russo, A., Broda, K.: Simplified reduct for choice rules in asp. Tech. rep., Tech. Rep.

DTR2015-2, Imperial College of Science, Technology and Medicine, Department of Computing

(2015)

[16] Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M., Jurafsky, D.: Deterministic

coreference resolution based on entity-centric, precision-ranked rules. Computational Linguis-

tics 39(4), 885–916 (2013)

[17] Lierler, Y., Schüller, P.: Parsing combinatory categorial grammar via planning in answer set

programming. In: Correct Reasoning, pp. 436–453. Springer (2012)

[18] Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1), 39–

54 (2002)

[19] Lifschitz, V.: What is answer set programming?. In: AAAI. vol. 8, pp. 1594–1597 (2008)

[20] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stan-

ford corenlp natural language processing toolkit. In: ACL (System Demonstrations). pp. 55–60

(2014)

[21] Mitkov, R.: Anaphora resolution: the state of the art. Citeseer (1999)

52

[22] Peng, H., Khashabi, D., Roth, D.: Solving hard coreference problems. Urbana 51, 61801 (2015)

[23] Pradhan, S., Ramshaw, L., Marcus, M., Palmer, M., Weischedel, R., Xue, N.: Conll-2011 shared

task: Modeling unrestricted coreference in ontonotes. In: Proceedings of the Fifteenth Confer-

ence on Computational Natural Language Learning: Shared Task. pp. 1–27. Association for

Computational Linguistics (2011)

[24] Pührer, J.: Stepwise Debugging in Answer-Set Programming. Ph.D. thesis, Technische Univer-

sität Wien (2014)

[25] Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building

with answer set programming in the gioia-tauro seaport. Theory and Practice of Logic Program-

ming 12(03), 361–381 (2012)

[26] Tang, C.K.F., Ternovska, E.: Model checking abstract state machines with answer set program-

ming. Fundamenta Informaticae 77(1-2), 105–141 (2007)

[27] Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R., et al.: A practical tool for mass-customising

configurable products. In: DS 31: Proceedings of ICED 03, the 14th International Conference

on Engineering Design, Stockholm (2003)

[28] Weischedel, R., Palmer, M., Marcus, M., Hovy, E., Pradhan, S., Ramshaw, L., Xue, N., Taylor,

A., Kaufman, J., Franchini, M., et al.: Ontonotes release 4.0. LDC2011T03, Philadelphia, Penn.:

Linguistic Data Consortium (2011)

[29] Zheng, J., Chapman, W.W., Crowley, R.S., Savova, G.K.: Coreference resolution: A review of

general methodologies and applications in the clinical domain. Journal of biomedical informat-

ics 44(6), 1113–1122 (2011)

53

Resume

Kenda Alakraa

PERSONAL INFORMATION

Nationality: Syrian.

Mobile: 00905358387176. Birth: 6/2/ 1984

Email: kinda_akraa @yahoo.com

OBJECTIVE

To be associated with an enterprise, where my educational and technical capabilities
will lead to a responsible position and have mutual benefits.

EDUCATION

Qualification:

o Bachelor degree in Informatics Engineering [72,495]

 Specialized in Software Engineering. Syria, Albaath Univ. [2006]

o Master degree in computer engineering [91]

 Specialized in Natural Language Processing . Turkey, Marmara
Univ. [2016]

Courses:

Operating Systems, Parallel Programming, Software Engineering, Information
Security, Distributed Systems, Database, Data Communication & Computer
Networks, Compilers, Quality & Reliability, Information Technology,
Algorithms & Data Structure, and Project Management.

EXPERIENCE

 Worked as Technical support & web site administrator at Health Science College,

Albaath Univ. One semester [Syria 2009]

 I have been working in some special institute in Homs as teacher

Professional international center (2005-2012)
Almamoun (2007-2009)

 Taught Software engineering for 5th year students of Informatics Engineering

College, Albaath Univ. One semester [Syria 2007].

 Taught Parallel programming for 4th year students of Informatics Engineering

College, Albaath Univ. One semester [Syria 2007].

 Taught E commerce for 5th year students of Informatics Engineering College,
Albaath Univ. One semester [Syria 2007].

 Taught Software engineering 2 for 4th year students of Informatics Engineering

College, Albaath Univ. One semester [Syria 2009].

 Conducted many seminars and lectures at the university.

 I have been working as a teacher in Computer Technical Institute at Al-Baath

Univ . [Syria 2009-2012].

TECHNICAL SKILLS

Programming languages:

.NET, C#,Java.

PHP.

Operating systems:

MS Windows 2000, XP.

PROJECTS

 English learning. 2004

Educational CD oriented to primary school students to help them to learn
English. [Used techs: Macromedia Authorware, Flash and Photoshop].

 Encryption & decryption software. 2005

Software encrypts and decrypts files or texts. [Used techs: C# .net]

 Mobile messenger. 2005

SMS chatting program on Symbian OS. [Used techs: J2ME].

 Graduation project : COSES (Component based OS for Embedded Systems) 2006

Graphical software with code generator to help OS programmers design OS for

Embedded systems aided by components, to reduce time and effort wasting and

make the OS as much as reliable and errorless. [Used techs: NesC Language,

C#.Net ,Linux environment, Tiny OS Components].

 Master project : Coreference Resolution Sieve Based on Answer Set Programming[TUBITK]

 2017

 Coreference Resolution is the task of connecting phrases and

 prepositions in a text if they denote the same real world entity.

 Our system performs coreference resolution with a logic program,

and an ASP solver.

LANGUAGES

 Arabic: native language.

 English: Reading (Excellent), Writing (Excellent),Speaking (Very good)

 TOFEL Certificate(Paper Based) :563 , March 2009

 WELT Certificate :Grammar and Usage C ,Writing B, Reading B, May 2009

 YDS Certificate: 60, April 2013

 Turkish: Reading (very good),Writing (very good),Speaking (Very good)

 C1 Certificate: 77, June 2013

