
ASP for Abduction in Natural Language
Understanding made more efficient using

External Propagators

Peter Schüller1, Carmine Dodaro2, and Francesco Ricca2

1 Computer Engineering Department, Faculty of Engineering
Marmara University, Turkey

peter.schuller@marmara.edu.tr
2 Department of Mathematics and Computer Science

University of Calabria, Italy
{dodaro,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a powerful paradigm for
knowledge representation and reasoning. Several tasks in Natural Lan-
guage Understanding (NLU) have been or have the potential to be mod-
eled in ASP. Among these, abduction under various optimality condi-
tions has been recently implemented in ASP. Experiments revealed that
pure ASP is not effective enough because the complete instantiation of
some critical constraints is not scalable. The recent extension of ASP
solvers with external propagators may provide means for avoiding the
instantiation bottleneck, and thus can help to obtain more efficient im-
plementations of abduction in NLU via ASP. We conducted preliminary
experiments with ASP solver interfaces for external propagators. The
results look promising and provide directions for the development of
full-fledged extensions of ASP solvers with non-ground constraints.

Keywords: ASP, Propagators, Abduction, NLU

ASP for Abduction in Natural Language Understanding

Abduction is a popular formalism for NLU, and we here consider a benchmark for
abduction under preference relations of cardinality minimality, coherence [7], and
Weighted Abduction [6]. For example given the text “Mary lost her father. She
is depressed.” using appropriate background knowledge and reasoning formalism
we can obtain the interpretation of the sentence that Mary is depressed because
of the death of her father.

Several tasks in Natural Language Understanding (NLU) have been or have
the potential to be modeled effectively using logic programming techniques [2, 4,
8]. Answer Set Programming (ASP) [3] is a powerful paradigm for knowledge rep-
resentation developed in the area of logic programming that is naturally suited
as a computational means for the realization of abduction under preferences. In-
deed, ASP formulations for the above NLU tasks were described in [8]. However,
the prevalent evaluation strategy adopted by state of the art ASP systems, which

– 19 –

is carried out by performing in a row grounding (i.e., variable elimination) and
solving (i.e., search for the answer sets of a propositional program), resulted to
be not effective in large instances. This is due to the grounding blow-up caused
by a small set of constraints.

In this work we study initial experiments on an extension of the ASP solver
wasp [1] suitable to overcome this problem. Indeed, wasp has been extended with
an API that allows a user to provide the solver with external Python programs
extending the main solving procedure. In particular, we experimented with the
API features for checking answer sets for constraint violations and adding propo-
sitional constraints lazily. In this way we circumvent the critical issue of ground-
ing some constraints of the ASP programs modeling NLU tasks. Our solution
works in the presence of optimization including the usage of unsatisfiable-core
optimization, which is not possible in the Python API of the Clingo solver [5].

Experimenting with external propagators

Preliminary Results. Table 1 shows preliminary experiments with the wasp
solver on the Bwd-A encoding for first order Horn abduction from [8]. We show
accumulated results for 50 natural language understanding instances from [7]
for objective functions cardinality minimality, coherence [7], and Weighted Ab-
duction [6]. We compare two evaluation methods: Constraint instantiates all
constraints during the initial grounding step and sends them to the solver, while
Propagator omits a significant portion of constraints (those related to transitiv-
ity) from the initial grounding and instantiates them lazily in the propagator
whenever a transitivity violation is detected in an answer set candidate.

We observe that for all objective functions, there are out-of-memory con-
ditions for 6 instances (maximum memory was 5 GB) while memory is not
exhausted with propagators, and average memory usage is significantly lower
with propagators (1.7 GB vs. around 150 MB). For cardinality minimality, the
average time to find the optimal solution decreases sharply from 76 sec to 8 sec
and we find optimal solutions for all instances. For coherence we can solve more
instances optimally however the required time increases from 64 sec to 103 sec
on average and 4 instances reach the timeout (600 sec). For Weighted Abduc-
tion, which represents the most complex optimization criterion, we solve fewer
instances (37) compared with using pre-instantiated constraints (44 instances).

Propagators can clearly be used to trade space for time, and in some cases
we decrease both space and time usage. For the complex Weighted Abduction
objective functions, we can observe in the Odc column that many more invalid
answer sets (2067) were rejected by the propagators compared with cardinality
minimality (70) or coherence (751).

Ongoing and Future Work. Our current prototype implementation only
checks when a full answer set candidate has been found, while most violated
constraints could also be detected based on a partial interpretations. Thus we
are implementing a propagator that can work on partial interpretations. We also
plan to experiment with the optimal frequency of propagation, which is known

– 20 –

Objective Function Method MO TO OPT T M Odc
sec MB

Cardinality Minimality Constraint 6 0 44 76 1715 0
Propagator 0 0 50 8 119 70

Coherence Constraint 6 0 44 64 1723 0
Propagator 0 4 46 103 131 751

Weighted Abduction Constraint 6 0 44 66 1731 0
Propagator 0 13 37 229 141 2067

Table 1. Experimental Results: MO/TO indicates number of instances were mem-
ory/time was exhausted, OPT the number of optimally solved instances, T/M indi-
cates average time and memory usage, and Odc shows number of times an answer set
was invalidated and a new clause was learned, i.e., a constraint was lazily instantiated.

to play a role in similar implementations for robotics planning. Moreover, our
prototype is able to learn only a single constraint per invalidated answer set,
however one answer set might contain several violations of not instantiated con-
straints. Adding all these at once might guide the solver much better to find an
optimal solution that violates no constraints.

Acknowledgements. This work has been supported by Scientific and Techno-
logical Research Council of Turkey (TUBITAK) Grant 114E777 and by MISE
under project “PIUCultura”, N. F/020016/01-02/X27.

References

1. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: International
Conference on Logic Programming and Non-monotonic Reasoning. pp. 40–54 (2015)

2. Balduccini, M., Baral, C., Lierler, Y.: Knowledge representation and question an-
swering. In: Handbook of Knowledge Representation, Foundations of Artificial In-
telligence, vol. 3, pp. 779–819. Elsevier (2008)

3. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Com-
munications of the ACM 54(12) (2011)

4. Christiansen, H.: Constraint programming for context comprehension. In: Brézillon,
P., Gonzalez, A.J. (eds.) Context in Computing - A Cross-Disciplinary Approach
for Modeling the Real World, pp. 401–418. Springer (2014)

5. Gebser, M., Kaminski, R., Obermeier, P., Schaub, T.: Ricochet Robots Reloaded: A
Case-Study in Multi-shot ASP Solving. In: Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation, pp. 17–32. Springer (2015)

6. Hobbs, J.R., Stickel, M., Martin, P., Edwards, D.: Interpretation as Abduction.
Artificial Intelligence 63(1-2), 69–142 (1993)

7. Ng, H.T., Mooney, R.J.: Abductive Plan Recognition and Diagnosis: A Compre-
hensive Empirical Evaluation. In: Knowledge Representation and Reasoning. pp.
499–508 (1992)

8. Schüller, P.: Modeling Variations of First-Order Horn Abduction in Answer Set
Programming. Fundamenta Informaticae (2016), to appear, arXiv:1512.08899 [cs.AI]

– 21 –

