
Joint Proceedings of the
2nd Workshop on Natural Language Processing

and Automated Reasoning,
and the

2nd International Workshop on Learning and
Nonmonotonic Reasoning
at LPNMR 2015

Editors:
Marcello Balduccini1, Alessandra Mileo2, Ekaterina Ovchinnikova3,

Alessandra Russo4, and Peter Schüller5

1 Drexel University, USA
2 INSIGHT Centre for Data Analytics, NUI Galway, Ireland

3 KIT, Karlsruhe & ICT, Uni Heidelberg, Germany
4 Dept. of Computing, Imperial College London, UK

5 Marmara University, Turkey

Preface

This volume contains the papers presented at the joint NLPAR 2015 and LNMR
2015 workshops: 2nd Workshop on Natural Language Processing and Automated
Reasoning, and 2nd International Workshop on Learning and Nonmonotonic
Reasoning, held on September 27, 2015, in Lexington, USA.

The NLPAR Workshop received 3 submissions and the LNMR workshop re-
ceived 2 submissions from different international institutions and research com-
munities. Each submission was reviewed by 3 program committee members. The
committee decided to accept 3 papers. The program also includes 2 invited talks.

The organizing committee wants to thank the Workshop Chair of LPNMR,
Yuliya Lierler, and the Chairs of LPNMR, Victor Marek, Giovambattista Ianni,
and Mirek Truszczyński, for their support in embedding this workshop into the
LPNMR conference organization.

This workshop was managed using EasyChair.

Marcello Balduccini
Alessandra Mileo

Ekaterina Ovchinnikova
Alessandra Russo

Peter Schüller

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 II

Table of Contents

Preface . II

Contents . III

Jason Hemann, Lawrence Moss and Cameron
Swords. Two Advances in the Implementations
of Extended Syllogistic Logics . 1

Rolf Schwitter and Stephen Guy. Answer Set
Programming for Controlled Natural Language
Processing . 15

Przemysław Andrzej Wałęga. Default Reasoning
with Propositional Encoding of Topological
Relations . 27

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 III

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 IV

Two Advances in the Implementations of
Extended Syllogistic Logics

Jason Hemann, Cameron Swords, and Lawrence S. Moss
{jhemann, cswords, lmoss}@indiana.edu

Indiana University, Bloomington

Abstract. Natural logics are of interest to both logicians and members
of the natural-language research community. They provide a means of
precisely reasoning about aspects of natural language in a way that is
computationally tractable, and akin to the process by which humans
reason in ordinary language. This paper takes as a target a reasonably-
small logic which support reasoning about “All”, “Some”, negated nouns,
relative clauses, and the “more X than Y ” operation of cardinality com-
parison. The importance of this logic is that it goes beyond first-order
logic, hence one cannot use off-the-shelf tools. This paper contains two
contributions to the implementation of this logic and others. First, it
mentions an implementation in Sage. The program builds proofs and
counter-models by one and the same algorithm. That is, the failure to
build a proof provides the data for a counter-model in an automatic
way. This abstract does not go into details on the algorithm, but a talk
on this includes a demo of the Sage program. Second, in a very dif-
ferent direction, we mention declarative implementations of a different
logic in this family, done in the miniKanren language. These implemen-
tations provide users with automated proof search, theorem generation,
and proof checking, and are designed to facilitate reuse in implementing
other natural logics.

1 Introduction

Logical syllogisms—arguments with deductive reasoning—have been the object
of study since at least Aristotle. More recently, these logical syllogisms become
the core of a series of natural logics [14], which aim to mirror the style of deduc-
tions people employ in everyday reasoning.

Though well-studied, there has been little work toward developing automated
tools for proof searches in natural logics. In the applications work that has been
undertaken [22,19,18,17,4,12,27,25], the implementations themselves have not
been the object of study; implementers have been content to use imperative
implementations, or rely on SAT solvers or tools like Prover9 and Sage. These
can provide powerful, performant tools for working with these logics. But, they
somewhat obscure the direct nature of the reasoning employed. A high-level,
declarative implementation of these logics, on the other hand, preserves and

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 1

highlights the direct reasoning of these deduction systems in their implementa-
tions. This declarative approach also provides to be extensible and well-suited
for rapid prototyping.

We utilize the declarative language miniKanren to demonstrate this encoding
process for several logics, including a new logic for cardinality comparison of
atoms, from their proof-tree derivation rules. For each logic, we produce for
each a single tool that can be used for proof instantiation, proof derivation, and
automated theorem search from a list of premises. The full code may be found
at http://github.com/jasonhemann/natlogic. This paper proceeds as follows:

– Section 2 discusses the logic with cardinality comparison, and it shows ex-
amples of the Sage implementation.

– Section 3 serves as a brief primer to the miniKanren language and the cKan-
ren implementation, embedded in Racket. It also describes the basic strategy
to encode natural logics as miniKanren programs, including premise rep-
resentation, proof construction, and user invocation. We demonstrate this
approach by encoding A, the logic of ‘All”, in miniKanren.

– Section 4 describes a miniKanren implementation of a logic with cardinality
comparison.

– Section 5 discusses related work and concludes and describes potential future
work.

2 A Logic for Cardinality Comparison

We begin by introducing a logic for cardinality comparison on top of the basic
syllogistic logic, taken from [20]. Consider the following argument:

There are more students than professors at the party
There are more professors than deans at the party
There are more students than deans at the party

(1)

The conclusion follows from the premises. The intuition is that the transitivity
of more . . . than . . . is a basic feature of human reasoning, on a par with the
transitivity of all . . . are . . . that we see in the syllogistic rule (barbara). We
do not wish to formalize the argument in (1) by translating it into another logic
(for example, logical systems which incorporate natural numbers); the point is
that the general logical principles of the target systems are likely to be much
more complicated than necessary for this task.

Let us widen the discussion a little. In addition to more . . . than . . ., we also
find in language the weaker assertion there are at least as many . . . as Here
is another argument which we take to be valid:

There are at least as many rabbits as deer
There are more deer than goats
There are more rabbits than goats

(2)

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 2

∀(p, p)
(axiom)

∀(n, p) ∀(p, q)

∀(n, q)
(barbara)

∃(p, q)

∃(p, p)
(some)

∃(q, p)

∃(p, q)
(conversion)

∃(p, n) ∀(n, q)

∃(p, q)
(darii)

∀(p, q) ∃≥(p, q)

∀(q, p)
(card-mix)

∀(p, q)

∃≥(q, p)
(subset-size)

∃≥(n, p) ∃≥(p, q)

∃≥(n, q)
(card-trans)

∃(p, p) ∃≥(q, p)

∃(q, q)
(card-∃)

∃>(p, q)

∃≥(p, q)
(more-at least)

∃>(n, p) ∃≥(p, q)

∃>(n, q)
(more-left)

∃≥(n, p) ∃>(p, q)

∃>(n, q)
(more-right)

∃≥(p, q) ∃>(q, p)

ϕ
(X)

∀(p, p)

∀(p, q)
(zero)

∀(p, p)

∀(q, p)
(one)

∀(q, p) ∃(p, q)

∃>(p, q)
(more)

∃>(p, q)

∃(p, q)
(more-some)

∃>(q, p)

∃>(p, q)
(more-anti)

∀(p, q)

∀(q, p)
(anti)

∃≥(p, q)

∃≥(q, p)
(card-anti) ∃(p, p) ∃≥(q, q)

∃(q, q)
(int)

∃≥(p, p) ∃≥(q, q)

∃≥(p, q)
(half) ∃>(p, p) ∃≥(q, q)

∃>(p, q)
(strict half)

∃≥(p, p) ∃≥(q, q) ∃(p, q)

∃(p, q)
(maj)

Fig. 1. Rules for the cardinality logic. The rules for a smaller system, which lacks
complemented variables, are found above the line.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 3

And here is an argument of a different character:

All violas are stringed instruments
There are at least as many violas as stringed instruments
All stringed instruments are violas

(3)

A moment’s thought will convince the reader that this is valid, provided that
we are speaking of finite situations. In this paper we restrict attention to finite
universes, in order to obtain a logical system that we think of greater “human
interest” than the weaker logic that would result if we allowed infinite structures
and thus denied the validity of (3).

Finally, we make our logical language more expressive by allowing comple-
mentation of nouns. Here are some examples:

There are at least as many x as y
There are at least as many non-y as non-x

There are at least as many x as non-x
There are at least as many y as non-y
There are at least as many x as non-y

(4)

The first example just above shows an inference whose soundness depends on
the fact that we are looking at a finite universe. The second uses a property of
“half”: if the universe has N objects, the premises tell us that the xs are at least
N
2 in number. The ys number at least N

2 , and so the non-ys number at most N
2 .

Thus the xs number at least as much as the non-ys. The fact that we can do all
of this with cardinality comparison and complement makes this work interesting
and non-trivial.

The main result in [20] is a sound and complete logical system whose sen-
tences are of the form All x are y, Some x are y, There are at least as many x as y,
and There are more x than y. Moreover, th logic does not involve translating the
cardinality assertions into any other language. The proof system is sound and
strongly complete: for a finite set Γ ∪ {ϕ} of sentences, ϕ is true in every model
of Γ if and only if there is a derivation of ϕ from Γ. This paper does not discuss
the completeness result at all but rather presents the implementation.

Formal System. Figure 1 presents the rules of the system in natural-deduction
format. The logic has sentences of the following forms:

– ∀(p, q) read as “all p are q”,
– ∃(p, q) read as “Some p are q”,
– ∃≥(p, q) read as “there are at least as many p as q”,
– ∃>(p, q) read as “there are more p than q”

There are no connectives, and the overline symbol (p) on the variables is for
set complement. This logic induces a notion of models and precise definitions of
model satisfaction such that we may define what it means for a (finite) set of
sentences to semantically imply another sentence.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 4

Implementation. On the other hand, this paper is about the implementation.
The logical consequence has been implemented in Sage, and the implementation
is currently available on https://cloud.sagemath.com. (That is, it can be shared.)
The consequence relation may be computed in polynomial time. This should be a
little surprising, since the cardinality comparison machinery cannot be expressed
in first-order logic.

Example 1. One may enter:

assumptions= ['All non-a are b',
'There are more c than non-b',
'There are more non-c than non-b',
'There are at least as many non-d as d',
'There are at least as many c as non-c',
'There are at least as many non-d as non-a']

conclusion = 'All a are non-c'
follows(assumptions,conclusion)

The last line indicates that we are asking if a given conclusion follows from
a given list of six assumptions. Then the program returns, telling us that the
conclusion does not follow. And it produces a counter-model, a model where all
of the assumptions are true and the conclusion false.

Here is a counter-model.
We take the universe of the model to be {0, 1, 2, 3, 4, 5}

noun semantics complement
+------+--------------+--------------------+

a {2, 3} {0, 1, 4, 5}
b {0, 1, 4, 5} {2, 3}
c {0, 2, 3} {1, 4, 5}
d {} {0, 1, 2, 3, 4, 5}

So it gives the semantics of a, b, c, and d as subsets of {0, . . . , 5}. Notice that
the assumptions are true in the model, but the conclusion is false. In the cases
that the conclusion did follow, the system would output a proof in our system.

Example 2. Here is an example of a derivation found by our implementation.
We ask whether the putative conclusion below really follows:

All non-x are x
Some non-y are z
There are more x than y

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 5

The program returns the following result when we provide it the assumptions
listed above, asking for a profe that there are more x than y:

1 All non-x are x Assumption
2 All y are x One 1
3 All non-x are x Assumption
4 All non-y are x One 3
5 Some non-y are z Assumption
6 Some non-y are non-y Some 5
7 Some non-y are x Darii 4 6
8 Some x are non-y Conversion 7
9 There are more x than y More 2 8

While the proof is displayed as a list rather than a tree, it is merely a cosmetic
difference.

The advantage of working with a syllogistic system formulated using ex falso
quodlibet rather than reductio ad absurdum is that the proof search and the
counter-model generation are closely related. In a sense, they are both results of
the same algorithm. Moreover, the algorithm is efficient. That is, the question
of whether a sentence follows from a list of assumptions is in polynomial time.

Unfortunately, the implementation is obscuring: it is over 1500 lines of Sage
and ultimately relies on iteratively constructing all possible derivations from a
given set of assumptions. Moreover, this implementation is customized toward
dealing with the logic of relative cardinalities. These features are hardly ideal
when experimenting with a new logic.

To this end, we now turn our focus to miniKanren, a declarative program-
ming language embedded in Racket, to demonstrate how it can be used to de-
velop proof searches for natural logics. Unlike our Sage work, the miniKanren
implementation of this cardinality logic is concise, clear, and extensible. It is,
however, unable to generate counter-models and takes super-polynomial time:
the miniKanren approach is good for experimentation, but has sub-par perfor-
mance.

3 Implementations in miniKanren

Our previous section discussed a Sage implementation of a single large logic
with distinct advantages in disadvantages. In its favor, the algorithm works in
polynomial time and includes counter-model generation along with proof search.
Unfortunately, the algorithm is highly specialized toward the logics and difficult
to explain (and thus eschewed in our presentation). In a different direction, we
present a generic way to build declarative implementations of syllogistic logics.
The key point is the genericity of the work: it is straightforward to construct
and experiment with proof searches for these logics in a declarative language. On
the other hand, these constructions are not as closely related to counter-model
search and the resultant encodings are less efficient than custom-constructed
algorithms.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 6

3.1 miniKanren: A Brief Introduction

miniKanren is a family of embedded, domain-specific relational (logic) pro-
gramming languages [3,5,6,2,10,9]. Implementations come with a variety of con-
straints, the foremost of which is ==, an equality constraint implemented with
syntactic, first order unification. For this presentation, we use cKanren, an im-
plementation of miniKanren embedded in Racket [7]. The cKanren implementa-
tion provides programmers with access to the entirety of the host language when
writing miniKanren programs1 and the ability to define their own constraints.

The run Interface. The primary interface to miniKanren is run, which takes
the maximal number of answers desired, an “output” variable—a variable with
respect to which the answer should be presented—and a sequence of goal ex-
pressions to achieve. Consider the following miniKanren program execution:

> (run 1 (q) (== q 3))
'(3)

Here, the 1 indicates we request at most one answer for the variable q. The
only constraint is the equality of q with 3. The output is always presented as a
list of results; this is the list contains only one result for q, the value 3. Consider
this second execution:

> (run 1 (q) (== 3 3))
'(_.0)

The list of results again contains only one element, this time _.0. The final
substitution for this program has no information regarding q, it is a fresh variable.
In the presentation of the answer, distinct fresh variables are written _.n, where
n is an index beginning at 0.

Getting fresh Variables. It is often useful to introduce auxiliary logic variables
as a part of writing a miniKanren program. In the example below, we wish to
assert the query variable is a pair; we introduce new variables a and d and use
them in a constraint:

> (run 1 (q) (fresh (a b) (== q `(,a . ,b))))
'((_.0 . _.1))

The fresh operator takes a list of identifiers and a sequence of goal expres-
sions over which new variables are scoped. In this case, they are scoped over
a constraint equating q with a pair whose first element is the variable a and
whose second is the variable b. We rely on the host language’s term construc-
tors to build miniKanren terms, destructuring must be performed with ==. New
variables are lexically scoped, so inner bindings shadows outer ones.
1 Except vectors, which are used in the implementation.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 7

Using conde for Non-deterministic Computation. The conde operator implements
a complete search (whose details are unimportant here) that allows us to simulate
a form of nondeterministic choice. It takes any number of clauses (lists of goal
expressions) and operates as though each clause were attempted independently.

> (run 3 (q) (conde
((fresh (a b) (== q `(,a . ,b))))
((== q 6))))

'(6 (_.0 . _.1))

We request 3 results, but receive only two: one from each conde clause.
miniKanren interleaves the search for results, and we are in general not guaran-
teed to receive the results in the order of their conde clauses.

Disequality Constraints. The miniKanren operator =/= implements disequality
constraints. Placing a disequality constraint on two terms already identical in
the current substitution causes failure, and if u and v are under a disequality
constraint, then a substitution extension that forces u and v to be syntactically
identical will also cause failure. Like the substitution, disequality constraints are
carried as part of the state and are indicated in the output:

> (run 1 (q) (=/= q 3))
'((_.0 (=/= ((_.0 3)))))

The variable q still has no binding in the ultimate substitution, and so it is
again presented as _.0, but we also mandate that _.0 not be 3. Our disequality
constraints, like the dif/2 of various Prologs, fail only when their arguments are
identical relative to the current substitution.

User-defined Constraints. We demonstrate an example of a user-defined cKanren
constraint below. We provide a name, and specify its criteria for satisfaction and
its interactions with other constraints. As part of the implementations we provide
a suite of pre-built constraints for defining these and other natural logics.

The un-atom constraint mandates that the term be a unary atom, which
for our purposes means a plural noun (e.g. “logicians”). We represent them as
symbols, and we require they not overlap with binary atoms (transitive verbs).

(define-attribute un-atom
#:satisfied-when symbol?
#:incompatible-attributes (number bin-literal bin-atom))

Adding constraints for atoms, literals, negated literals, etc., makes the result-
ing answers more legible and also groups together multiple answers by collapsing
the search space.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 8

3.2 Putting Things Together

A miniKanren program attempts to satisfy a number of goals in a given state,
which either succeed, returning a stream of one or more achieving states, or fail,
yielding an empty stream. Because cKanren is embedded in Racket, miniKanren
programmers have access to the entirety of Racket when writing miniKanren pro-
grams. As a result, relations can be defined globally and then invoked elsewhere,
as in the following example:

> (define (membero x l)
(fresh (a d)

(== l `(,a . ,d))
(conde

((== x a))
((=/= x a) (membero x d)))))

We globally define the binary relation membero, which holds when x is an
elements of a list l. In the program below, we demand q be such a list containing
'x, and we request three such elements.

> (run 3 (q) (membero 'x q))
'((x . _.0)

((_.0 x . _.1) (=/= ((_.0 x))))
((_.0 _.1 x . _.2) (=/= ((_.0 x)) ((_.1 x)))))

Furthermore, we can use Racket’s macro system to extend miniKanren with
additional syntactic operations, such as matche, a pattern matcher that will per-
form automatic fresh variable creation [13]. For example, consider the following
two definitions of relational append:

(define (appendo ls1 ls2 lout)
(conde

((== ls1 '())
(== ls2 lout))
((fresh (a d r)

(== ls1 `(,a . ,d))
(== lout `(,a . ,r))
(appendo d ls2 r)))))

(define (appendo ls1 ls2 lout)
(matche ls1

(()
(== ls2 lout))

((,a . ,d)
(fresh (r)

(== lout `(,a . ,r))
(appendo d ls2 r)))))

The left one creates a number of fresh variables and performs unification
against ls1 at each step. The right one performs the same operations with the
pattern matching tool matche, dispatching on the shape of ls1. This approach
allows us to avoid creating a number of additional variables and elide the unifi-
cations against ls1 in the program2. This style of match-and-dispatch will prove
invaluable in rapidly constructing logical proof search.

2 These equations and fresh variables are created during macro expansion.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 9

3.3 A System for Logical Encoding

With this basic understanding of natural logics and miniKanren, we now proceed
with encoding natural logics in a generic and extensible way. We begin with A,
the logic of “All” relations [17,19,22,8], to demonstrate the general encoding
process. A uses three judgement rules: environmental lookup, (axiom), and
(barbara) from Figure 1. We use Γ to represent the set of premises.

These rules indicate that every object, or unary atom, p, is reflexively self-
contained, and the containment relation is transitive. To encode these rules in
miniKanren, we must build a relation that takes as arguments a theorem φ to
prove, some environment of premises, Γ, and, because we are writing a relation,
some proof tree output proof. The resultant procedure, presented in Figure 2,
uses miniKanren’s ==, conde, matche, and fresh as well as the aforementioned
parts of the host language.

1 (define (A φ Γ proof)
2 (matche φ
3 [(∀ ,a ,a) (== φ proof)] ;; Axiom
4 [,x (membero x Γ) (== proof `(,x in-Γ))] ;; Lookup
5 [(∀ ,n ,q) ;; Barbara
6 (fresh (p prim1 proof1 prim2 proof2)
7 (== `((,proof1 ,proof2) => ,φ) proof)
8 (== prim1 `(∀ ,n ,p))
9 (== prim2 `(∀ ,p ,q))

10 (A prim1 Γ proof1)
11 (A prim2 Γ proof2))]))

Fig. 2. A miniKanren implementation for A.

Our implementation operates over not-quite-English: like McAllester and Gi-
van [15], we find it convenient to encode the premises provided as lists. We encode
“All” sentences as (∀ p q) instead of McAllester and Givan’s (All p q) structure:
Racket supports unicode so we can more closely match the format of the logical
rules.

This procedure is the entire encoding of A. We begin by matching against
the input φ and proceeding with three possibilities (one for each rule):

– The first, at line 3, asks if φ will unify with (∀ ,a ,a)—if we are stating that
“All a are a.” In this case, the proof follows trivially (by (axiom)), and thus
we unify the statement with the proof tree output.

– The second, at line 4, matches generically against any φ and then checks if
that φ is a member of Γ. If it is, we unify the proof tree with a list denoting
the entailment.

– The third, on lines 6–11, encodes the transitivity rule (barbara) of A. We
introduce five fresh variables:

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 10

- p, the intermediary atom in the term
- prim1 and prim2, which represent (∀ ,n ,p) and (∀ ,p ,q) respectively
- proof1 and proof2, which indicate the proof terms for (∀ ,n ,p) and
(∀ ,p ,q) respectively

Finally, we invoke A to recursively build proofs for (∀ ,n ,p) and (∀ ,p ,q),
passing in the appropriate proof variables in each case.

4 Cardinality Logic in miniKanren
With these tools in mind, we implement the cardinality object from Figure 1 in
miniKanren. The first half (above the line in Figure 1) is given in Figure 3.

Similar to the preceding examples, the Racket function card implements a
miniKanren relation that describes when that relationship holds between its
inputs, and each matche clause of the card relation corresponds to a rule of
Figure 1.

For larger logics such card, the repetition inherent in specifying the rules of
the logic may become tedious: each two-premise recursion mirrors our implemen-
tation of (barbara) in Figure 2, and the one-premise rules follow similarly. We
use Racket’s macro system to once again simplify our task, creating two addi-
tional syntactic forms that construct the appropriate miniKanren terms. These
new syntactic forms, single-prim-term and double-prim-term in Figure 3, take
the logic’s name, the environment, the term(s) that is required to hold in order
for φ to hold, and any auxillary variables required, and use them to construct
the fresh variable creation, unifications, and recursions necessary to implement
the rule. For example, consider our equivalent implementations of (barbara)
side-by-side:

[(∀ ,n ,q) ;; Barbara
(fresh (p prim1 proof1 prim2 proof2)

(== `((,proof1 ,proof2) => ,φ) proof)
(== prim1 `(∀ ,n ,p))
(== prim2 `(∀ ,p ,q))
(A prim1 Γ proof1)
(A prim2 Γ proof2))]

[(∀, n, q) ;; Barbara
(double-prim-term

card proof φ Γ
`(∀ ,n ,p)
`(∀ ,p ,q)
p)]

Using these syntactic abstractions, our program is reduced to a series of
pattern-matching clauses whose the left-hand sides are the translations of the
conclusions of a judgment rule, and whose right-hand sides are invocations of
single-prim-term or double-prim-term, encoding the antecedent or antecedents.
This direct correspondence between the logical rules and the implementation
facilitates rapid prototyping and quick experimentation when working with nat-
ural logics.

5 Conclusions and Next Steps
Interest in the history of syllogistic logics motivated the development of a great
variety of tools (e.g., Glashof [11]). In particular, the work in Prolog has focused

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 11

(define-syntax double-prim-term
(syntax-rules ()

[(_ logic proof φ Γ e1 e2 vars ...)
(fresh (vars ... prim1 prim2 proof1 proof2)

(== `((,proof1 ,proof2) => ,φ) proof)
(== prim1 e1)
(== prim2 e2)
(logic prim1 Γ proof1)
(logic prim2 Γ proof2))]))

(define-syntax single-prim-term
(syntax-rules ()

[(_ logic proof φ Γ e1 vars ...)
(fresh (vars ... prim1 proof1)

(== `((,proof1) => ,φ) proof)
(== prim1 e1)
(logic prim1 Γ proof1))]))

(define (card φ Γ proof)
(matche φ

[(∀ ,a ,a) (== φ proof)] ;; Axiom
[(∀, n, q)
(double-prim-term card proof φ Γ `(∀ ,n ,p) `(∀ ,p ,q) p)] ;; Barbara

[(∃ ,p ,p) ;; ∃
(single-prim-term card proof φ Γ `(∃ ,p ,q) q)]

[(∃ ,p ,q) ;; Conversion
(single-prim-term card proof φ Γ `(∃ ,q ,p))]

[(∃ ,p ,q) ;; Darii
(double-prim-term card proof φ Γ `(∃ ,p ,n) `(∀ ,n ,q) n)]

[(∀ ,q ,p) ;; Card-Mix
(double-prim-term card proof φ Γ `(∀ ,p ,q) `(∃≥ ,p ,q))]

[(∃≥ ,q ,p) ;; Subset-Size
(single-prim-term card proof φ Γ `(∀ ,p ,q))]

[(∃≥ ,n ,q) ;; Card-Trans
(double-prim-term card proof φ Γ `(∃≥ ,n ,p) `(∃≥ ,p ,q) p)]

[(∃ ,q ,q) ;; Card-E
(double-prim-term card proof φ Γ `(∃ ,p ,p) `(∃≥ ,q ,p) p)]

[(∃≥ ,p ,q) ;; More-At-Last
(single-prim-term card proof φ Γ `(∃> ,p ,q))]

[(∃> ,n ,q) ;; More-Left
(double-prim-term card proof φ Γ `(∃> ,n ,p) `(∃≥ ,p ,q) p)]

[(∃> ,n ,q) ;; More-Right
(double-prim-term card proof φ Γ `(∃≥ ,n ,p) `(∃> ,p ,q) p)]

[,x (membero x Γ) (== proof `(,x in-Γ))] ;; Lookup
[,x ;; X
(double-prim-term card proof φ Γ `(∃≥ ,p ,q) `(∃≥ ,q ,p) p q)]))

Fig. 3. miniKanren implementation of the positive portion of the cardinality logic in
Figure 1.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 12

on natural language processing and the classical syllogistic logics (typically no
further than S†) [23,16,26,22,19,18,4,12,27,25]. There are a variety of such re-
sults, and it would be difficult to thoroughly catalog all of these systems here.

Our work with Sage shows that it is possible to do proof search and counter-
model generation at the same time. The key point is that reductio ad absurdum
is a derived rule, not a basic feature of the system. This is what is behind our
polynomial-time algorithm.

The relational nature of miniKanren facilitates proof verification and proof
search in the same implementation, and the generic style of implementation
allows us to freely explore new extensions to the syntax and proof theory with
little to no additional overhead. By default, miniKanren relies on a kind of
breadth-first search strategy. Modifying these implementations, using techniques
pioneered in rKanren [24], will allow the user to more finely tune the direction of
the proof search. Additionally, future improvements in cKanren’s set constraint
architecture will likely enable an increase in both performance and clarity of our
implementations.

But the most important next step in this line of work is to connect with the
tableau system in [1] (based on [21]). Abzianidze’s paper shows that computa-
tional systems based on natural logics can be combined with CCG parsers and
other NLP tools in order to scale up work in this area. Indeed, he succeeds in
handling RTE-like data. Nevertheless, his approach is based on tableaux, and
ours is based on the complementary technique of formal proofs. So connecting
the two approaches is the most important task on the road toward using natural
logic in NLP.

References

1. Lasha Abzianidze. A tableau prover for natural logic and language. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing
(EMNLP). ACL, 2015.

2. Claire E Alvis, Jeremiah J Willcock, Kyle M Carter, William E Byrd, and Daniel P
Friedman. cKanren: miniKanren with constraints. Scheme and Functional Pro-
gramming, 2011.

3. William E. Bird. minikanren.org. http://minikanren.org/. Accessed 1/18/2014.
4. Patrick Blackburn and Johan Bos. Representation and Inference for Natural Lan-

guage: A First Course in Computational Semantics (Studies in Computational
Linguistics). Center for the Study of Language and Information, 2005.

5. William E Byrd. Relational programming in miniKanren: techniques, applications,
and implementations. PhD thesis, Indiana University, 2009.

6. William E Byrd, Eric Holk, and Daniel P Friedman. minikanren, live and untagged.
Scheme and Functional Programming.

7. Matthew Flatt and PLT. Reference: Racket. Technical Report PLT-TR-2010-1,
PLT Design Inc., 2010. http://racket-lang.org/tr1/.

8. Nissim Francez and Roy Dyckhoff. Proof-theoretic semantics for a fragment of
natural language. Linguistics and Philosophy, 33(6):447–477, 2011.

9. Daniel P. Friedman, William E. Byrd, and Oleg Kiselyov. The Reasoned Schemer.
The MIT Press, July 2005.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 13

10. Daniel P. Friedman and Oleg Kiselyov. A declarative application logic program-
ming system, 2005.

11. Klaus Glashof. Computational aristotelian term logic, 2004. see
http://webapp5.rrz.uni-hamburg.de/syllogism/aristotelianlogic/.

12. Nikolay Ivanov and Dimiter Vakarelov. A system of relational syllogistic incor-
porating full boolean reasoning. Journal of Logic, Language, and Information,
21(4):433–459, 2012.

13. Andrew W. Keep, Michael D. Adams, Lindsey Kuper, William E. Byrd, and
Daniel P. Friedman. A pattern matcher for miniKanren or how to get into trou-
ble with CPS macros. In Scheme ’09: Proceedings of the 2009 Scheme and Func-
tional Programming Workshop, number CPSLO-CSC-09-03 in California Polytech-
nic State University Technical Report, pages 37–45, 2009.

14. George Lakoff. Linguistics and natural logic. Synthese, 22:151–271, 1970.
15. David A. McAllester and Robert Givan. Natural language syntax and first-order

inference. Artificial Intelligence, 56:1–20, 1992.
16. M McCord. Using slots and modifiers in logic grammars for natural language.

Artificial Intelligence, 18(3):327–367, May 1982.
17. Lawrence S. Moss. Completeness theorems for syllogistic fragments. In F. Hamm

and S. Kepser, editors, Logics for Linguistic Structures, pages 143–173. Mouton de
Gruyter, 2008.

18. Lawrence S. Moss. Syllogistic logic with complements. In Games, Norms and
Reasons: Proceedings of the Second Indian Conference on Logic and its Applications,
page 19 pp. Springer Synthese Library Series, Mumbai, 2010.

19. Lawrence S. Moss. Notes on natural logics. unpublished ms., Indiana University,
2013.

20. Lawrence S. Moss. Syllogistic logic with cardinality comparisons. In Katalin
Bimbo, editor, J. Michael Dunn on Information Based Logics, Outstanding Con-
tributions to Logic. Springer-Verlag, to appear.

21. Reinhard Muskens. An analytic tableau system for natural logic. In Maria Aloni,
Harald Bastiaanse, Tikitu de Jager, and Katrin Schulz, editors, Logic, Language
and Meaning, volume 6042 of Lecture Notes in Computer Science, pages 104–113.
Springer Berlin Heidelberg, 2010.

22. Ian Pratt-Hartmann and Lawrence S. Moss. Logics for the relational syllogistic.
Review of Symbolic Logic, 2(4):647–683, 2009.

23. John F. Sowa. Conceptual graphs: Online course in knowledge representation using
conceptual graphs. http://cg.huminf.aau.dk/index.html. Accessed 1/18/2014.

24. Cameron Swords and Daniel Friedman. rKanren: Guided search in miniKanren.
Scheme and Functional Programming, 2013.

25. Jan van Eijck. Natural logic for natural language. In Logic, Language, and Com-
putation, volume 4363 of LNAI, pages 216–230. Springer-Verlag, 2007.

26. Adrian Walker. Knowledge Systems and Prolog: A Logical Approach to Expert
Systems and Natural Language Processing. Addison-Wesley, 1987.

27. Peter Yule and Buccleuch Place. A Prolog implementation of the method of Euler
circles for syllogistic reasoning, 1996.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 14

Answer Set Programming for
Controlled Natural Language Processing

Rolf Schwitter and Stephen C Guy

Department of Computing
Macquarie University

Sydney 2109, Australia
{Rolf.Schwitter|Stephen.Guy}@mq.edu.au

Abstract. Answer Set Programming is a compelling non-monotonic
knowledge representation paradigm for representing specifications in con-
trolled natural language and reasoning about them. In this paper, we in-
troduce the controlled natural language PENGASP and discuss the kind
of answer set programs that the PENGASP system automatically gener-
ates for a given specification. The controlled natural language PENGASP

is unique, since it is the first controlled natural language that uses An-
swer Set Programming as target language for reasoning, in particular for
question answering. PENGASP allows us to specify factual and termi-
nological knowledge, to combine weak and strong negation in order to
specify a local form of the closed world assumption, to deal with cardinal-
ity constraints, to specify arithmetic operations, and to express defaults
and exceptions. An emerging PENGASP specification can be queried in
controlled natural language using closed world and open world reasoning
depending on the information available in the specification.

1 Introduction

Controlled natural languages (CNLs) are simplified forms of natural language
that are constructed from full natural languages by restricting the size of the
grammar as well as the vocabulary in order to reduce or eliminate ambiguity and
complexity [14, 21]. CNLs can be used as high-level interface languages to knowl-
edge systems to improve the knowledge acquisition and specification process; in
particular, if the writing of a specification in CNL is supported by a sophisticated
authoring tool with good runtime feedback mechanisms [10]. Although a lot of
progress has recently been made in the domain of data-driven applications, there
exists still a strong need for mechanisms that support the manual acquisition
and encoding of fine-grained commonsense and domain knowledge so that this
knowledge can be used for automated reasoning.

There exist a number of CNLs [3, 5, 24] that have been used for knowledge
acquisition and for writing specifications but apart from our controlled language
PENGASP none of these languages uses Answer Set Programming (ASP) as
target language for knowledge representation and reasoning. The predecessor of
PENGASP , PENG Light [24], used first-order predicate logic as target language,

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 15

Rolf Schwitter, Stephen C Guy

similar to Attempto Controlled English [5], but was not able to deal with non-
monotonic forms of reasoning. ASP is interesting in our context, since it offers a
declarative modeling language with modeling constructs that allow us to process
non-monotonic theories and answer questions over these theories.

In the wider context of natural language processing, ASP has been studied
– among other things – for processing sentences with normatives and excep-
tions [2], for processing biomedical queries [4], for recognising textual entail-
ment [15], for integrating syntactic parsing with semantic disambiguation [15],
for parsing Combinatory Categorial Grammar [19], for reasoning with the output
of a semantic parser [22], and for domain-specific question answering [23].

In this paper, we will focus on those ASP programs that the language proces-
sor of the PENGASP system generates for a specification written in controlled
natural language and show how these programs can be used for question answer-
ing. The rest of this paper is structured as follows: In Section 2, we present a brief
introduction to ASP, followed by an overview of the controlled natural language
PENGASP in Section 3. In Section 4, we introduce the machinery that is used
to process a PENGASP specification. In Section 5, we present an example spec-
ification written in PENGASP , show how factual and terminological knowledge
can be expressed in this controlled language, and discuss how we can specify a
local form of the closed world assumption on the level of the controlled language.
In Section 6, we have a closer look at how a specification can be investigated
with the help of questions and how these questions are represented in ASP. In
Section 7, we discuss additional features of the PENGASP language and show
how ordinal and cardinal numbers can be used, how arithmetic operations can
be specified, and finally how defaults and exceptions can be expressed. Finally,
in Section 8, we conclude and highlight the advantages of our approach.

2 Answer Set Programming

ASP is a declarative knowledge representation language that has its roots in
logic programming and non-monotonic reasoning [1, 6, 17]. In ASP, a problem
specification is expressed in the form of an extended logic program [8] so that
its logical models (= answer sets) provide a solution to the original problem.
While ASP programs look at first glance similar to Prolog programs, they use a
completely different computational mechanism. In ASP, solutions are computed
in a bottom-up fashion and represented as answer sets. An ASP program consists
of a finite set of rules of the following form:

L0 ; ... ; Lk :- Lk+1, ..., Lm, not Lm+1, ..., not Ln.

where all Li’s are literals. A literal is either a positive atom or a negative atom.
The symbol ‘:-’ stands for an if connective and the symbol‘,’ for a conjunction.
The expression on the left-hand side of the if connective is called the head of the
rule, and the expression on the right-hand side is called the body of the rule. The
head may consist of an epistemic disjunction [9] of literals denoted by the symbol
‘;’. Literals in the body may be preceded by default negation (= negation as

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 16

Answer Set Programming for Controlled Language Processing

failure) denoted by the symbol ‘not’.1 The head or the body of a rule can be
empty. A rule with an empty head is called an integrity constraint and a rule with
an empty body is called a fact. ASP is supported by powerful tools; for example,
the new clingo 4 system [7] extends ASP’s input language by an embedded
scripting language that we use for the activation of those parts of a domain-
independent background theory that are relevant for a given specification.

3 The Controlled Natural Language PENGASP

The controlled natural language PENGASP distinguishes four types of sentences:
declarative sentences such as (1), conditional sentences such as (2), imperative
sentences such as (3), and questions such as (4):

1. Pete holds a casual job as tutor.
2. If a student is not provably employed then the student is not em-

ployed.
3. Exclude that Sue teaches Web Technology.
4. Are most students employed?

The syntactic structure of these sentences is derived from a sentence pattern
for simple declarative sentences that consists of a subject, a verb, depending
complements and optional adjuncts. Each sentences has at least a subject and
a verb. Complements depend on the verb and are necessary to complete the
meaning of the verb. Adjuncts modify the verb and are optional. All other sen-
tence types are derived from this pattern through coordination, subordination,
quantification, weak and strong negation, keywords, and in the case of certain
constructions through syntactic movement of elements. The syntactic form of
these sentences and the anaphoric use of nominal expressions is carefully re-
stricted by a unification-based grammar that consists of about 350 grammar
rules and a domain specific lexicon. The syntactic restrictions of PENGASP are
justified by the formal properties of the ASP language. It is important to note
that the writing of a specification in PENGASP is supported by a sophisticated
authoring tool [11] that displays lookahead information which enforces the syn-
tactic structure of the language, and thus makes sure that every PENGASP

sentence is syntactically correct.

4 Processing a PENGASP Specification

The language processor of the PENGASP system uses a chart parser and trans-
lates a textual specification during the parsing process into a discourse repre-
sentation structure (DRS) in the spirit of Kamp and Reyle [13]. In contrast to
Kamp and Reyle, our extended discourse representation structures (eDRSs) al-
low for two additional operators: one for constraints and one for weak negation

1 Some ASP tools [7] allow for double default negated literals in the body of rules,
but this construction is not used in the context of PENGASP .

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 17

Rolf Schwitter, Stephen C Guy

(= default negation). During the construction of an eDRS, the language proces-
sor resolves anaphoric expressions, produces a paraphrase for the input text that
clarifies the interpretation of the machine, and generates lookahead information
for the authoring tool similar to PENG Light [24]. The generated eDRS basically
serves as an interlingua between the controlled natural language and the ASP
program. The language processor analyses the eDRS and translates it into an
executable ASP program. During this translation process the relevant parts of
a predefined domain-independent ASP background theory are identified and a
Lua script [12] that registers these parts is dynamically generated and embedded
into the resulting ASP program. This script will activate the identified parts of
the background theory when the ASP tool clingo [7] executes the ASP program.

5 A PENGASP Specification in a Nutshell

In the following, we will develop a simple specification in PENGASP in order to
highlight some benefits of ASP for CNL processing.

5.1 Specifying Factual Knowledge

The text below is written in PENGASP and consists of four declarative sentences
that convey factual knowledge:

5. Pete holds a casual job as tutor. Lin is enrolled in a Mathematics
degree. Dave is enrolled in an English degree and holds a casual job
as guard. Mary who is matriculated in a Computer Science degree
holds a casual job as shop assistant.

The first two sentences are simple declarative sentences, the third sentence
contains a coordinated verb phrase, and the fourth sentence an embedded relative
clause. The translation of this specification via an eDRS results in an ASP
program consisting of a number of facts (only the translation of the third sentence
is displayed here for reasons of space):

#program base.

const(dave).

inst(sk2, english_degree).

prop(dave, sk2, enrolled_in).

inst(guard, casual_job).

const(guard).

pred(dave, guard, hold).

Note that we use a flat representation for logical atoms in ASP and a small
number of predefined predicates (such as const, inst, prop, pred, etc.). Names
are represented as constants and anonymous names as Skolem constants (for
example, sk2). Skolem constants denote existentially quantified objects and are
created during the translation process. Note also that an ASP program can
be organised in multiple program parts in the ASP tool clingo. The directive
#program base. indicates the main part of the program.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 18

Answer Set Programming for Controlled Language Processing

5.2 Specifying Terminological Knowledge

We can use the controlled language PENGASP to add terminological knowledge
to our specification, for example:

6. Dave, Mary, Pete and Lin are students.
7. Every Computer Science degree, every English degree and every Math-

ematics degree is a degree program.
8. Every casual job is a job.
9. Every student who is matriculated in a degree program is enrolled in

that degree program.
10. If a student holds a job then the student is employed.

Sentence (6) expresses a series of concept assertions; sentence (7) and sen-
tence (8) state general inclusion axioms; sentence (9) specifies a subsumption
relationship between two properties, incl. domain and range restrictions; and
sentence (10) relates a binary relation to a property. For example, the trans-
lation of sentence (8) adds a rule and a fact of the following form to the ASP
program:

inst(A, job) :- inst(A, casual_job).

is_subclass(casual_job, job).

The rule determines the instances of the class hierarchy and the fact is used
to generate the actual class hierarchy with the help of the following part of the
domain-independent background theory:

#program is_subclass.

subclass(Class1, Class2) :- is_subclass(Class1, Class2).

subclass(Class1, Class3) :- is_subclass(Class1, Class2),

subclass(Class2, Class3).

-is_leaf(Class2) :- subclass(Class1, Class2).

is_defined(Inst) :- inst(Inst, Class), not -is_leaf(Class).

With the help of this background knowledge, the generated answer set will tell
us which classes are not leaves and which instances are defined. This information
will be used – as we will discuss in Section 6 – for the question answering process.

5.3 Specifying the Local Closed World Assumption

Combining weak and strong negation in a conditional sentence allows us to
express a refined form of the closed world assumption in PENGASP . This as-
sumption states that a predicate does not hold, whenever it cannot be shown
(proven) that it does hold [9, 18], for example:

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 19

Rolf Schwitter, Stephen C Guy

11. If a student is not provably employed then the student is not em-
ployed.

This local form of the closed world assumption specifies that we have com-
plete information about the predicate employed in our knowledge base. In theory,
this sentence can be translated into the following ASP rule with a weak negation
in the body of the rule and a strong negation in the head:

-prop(A, employed) :- inst(A, student), not prop(A, employed).

However, in PENGASP we split up this kind of rule into two rules during the
translation process in order to record for which predicates the local closed world
assumption (local cwa/1) has been applied to, in our case:

-prop(A, employed) :- local_cwa(neg_prop(A, employed)).

local_cwa(neg_prop(A, employed)) :- inst(A, student),

not prop(A, employed).

As we will see in the next section, this will help us to answer questions under
the local closed world assumption as well as under the open world assumption
depending on the information that is available in the specification. Note that
an ASP program can specify the local closed world assumption for some of its
predicates and leave the other predicates for which we do not have complete
information in the scope of the open world assumption.

6 Investigating a Specification

The PENGASP system allows us to investigate an emerging specification with
the help of yes/no-questions such as (12) and (13) and wh-questions such as (14)
and (15):

12. Is Dave who is enrolled in an English degree employed?
13. Are most students employed?
14. Which students are employed?
15. Who is employed?

In the simplest case, one can translated a question such as (14) into a rule
with a specific answer literal (ans/1) in the rule head and add this rule to the
ASP program:

ans(A) :- inst(A, student), prop(A, employed).

After the model generation process, all answer literals can be easily extracted
from the answer set(s). However, this solution does not tell us whether a question
has been answered under closed world reasoning or open world reasoning, and
we can not make this distinction clear on the level of the controlled natural
language. Since all those predicates for which we have complete information are
recorded (as explained in Section 5.3), we can use this information in the question
answering process. For example, the positive wh-question (15) is automatically
translated into a fact and four rules in PENGASP :

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 20

Answer Set Programming for Controlled Language Processing

ans_id(no1, who, pos).

ans(no1, inst(A, B), pos, cwa) :- query(A, who, B),

prop(A, employed), local_cwa(neg_prop(_, employed)).

ans(no1, inst(A, B), pos, owa) :- query(A, who, B),

prop(A, employed), not local_cwa(neg_prop(_, employed)).

ans(no1, inst(A, B), neg, cwa) :- query(A, who, B),

-prop(A, employed), local_cwa(neg_prop(A, employed)).

ans(no1, inst(A, B), neg, owa) :- query(A, who, B),

-prop(A, employed), not local_cwa(neg_prop(A, employed)).

The fact (ans id/3) serves as a rule identifier. The first two rules distinguish
between positive questions (pos) under the local closed world assumption (cwa)
and the open world assumption (owa). The second two rules can be used for a form
of cooperative question answering that is triggered if only negative information
(neg) is available for a positive question. During the translation of the question
into ASP, the type of the query word (who) is identified and used to activate the
relevant part of the background theory. In our example, this part consists of the
following rules for question (15):

#program who.

ans(ID, unknown, Pol, nil) :- ans_id(ID, who, Pol),

not ans(ID, _, Pol, cwa), not ans(ID, _, Pol, owa).

query(Inst, who, Class) :- inst(Inst, Class), not -is_leaf(Class).

query(Inst, who, nil) :- const(Inst), not is_defined(Inst).

The first rule deals with the case where no information under closed world
and open world reasoning is available to answer the question. The next two
rules are used to extract for a given query word instances of classes that occur
as leaves of the class hierarchy and named instances that have not been defined
in the class hierarchy.

Answering certain types of questions requires counting. For example, question
(13) is translated into a fact and a number of rules with a specific literal (eval/4)
in the head that will trigger the subsequent evaluation process by background
axioms:

ans_id(no2, most, pos)

eval(no2, A, pos, cwa) :- inst(A, student), prop(A, employed),

local_cwa(neg_prop(_, employed)).

eval(no2, A, neg, cwa) :- inst(A, student), -prop(A, employed),

local_cwa(neg_prop(A, employed)).

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 21

Rolf Schwitter, Stephen C Guy

The first rule takes care of instances that occur in a positive relation and
the second rule of instances that occur in a negated relation (here under the
closed world assumption). These instances are counted and compared with the
help of additional background axioms (for reasons of space, we only show the
background axiom for a yes-answer):

#program most.

ans(ID, yes, pos, cwa) :-

ans_id(ID, most, pos), C1 > C2,

C1 = #count { Inst1 : eval(ID, Inst1, pos, cwa) },

C2 = #count { Inst2 : eval(ID, Inst2, neg, cwa) }.

The translation of a specification into an ASP program can result in one or
more answer sets. If we end up with more than one answer set, then we can
answer a query under brave reasoning or under cautious reasoning. A query is
bravely true for a substitution of variables, if its conjunction of body literals is
satisfied in at least one answer set, and cautiously true, if it is satisfied in all
answer sets.

7 Additional Features of PENGASP

In the following subsections, we discuss additional features of the language
PENGASP that are novel in controlled natural language processing and can
be conveniently represented and processed in ASP.

7.1 Ordinal and Cardinal Numbers

PENGASP allows us to express statements that contain ordinal and cardinal
numbers and to anaphorically link noun phrases with ordinal numbers (e.g.,
first course) to noun phrases that introduce a cardinality restriction (e.g., two
courses):

16. There are exactly two courses. The first course is Web Technology
and the second course is Information Technology. Alice and Sue are
lecturers. Every lecturer teaches exactly one course.

This partial specification (16) generates four different answer sets, since we
neither specified that the two courses must be distinct nor who teaches which
course:

Answer: 1

pred(alice, information_technology, teach)

pred(sue, information_technology, teach) ...

Answer: 2

pred(alice, web_technology, teach)

pred(sue, web_technology, teach) ...

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 22

Answer Set Programming for Controlled Language Processing

Answer: 3

pred(alice, information_technology, teach)

pred(sue, web_technology, teach) ...

Answer: 4

pred(alice, web_technology, teach)

pred(sue, information_technology, teach) ...

We can exclude the first two answer sets with the help of the following state-
ment in PENGASP :

17. Every lecturer teaches exactly one distinct course.

This sentence contains the predefined keyword distinct in object position and
is a short form for the subsequent two sentences:

18. Every lecturer teaches exactly one course.
19. For every course there is exactly one lecturer who teaches that course.

The translation of sentence (17) as well as the translation of the alternatives
(18) and (19) results in the following two ASP rules with cardinality constraints
in the rule head:

1 { pred(A, B, teach) : inst(A, lecturer) } 1 :- inst(B, course).

1 { pred(B, A, teach) : inst(A, course) } 1 :- inst(B, lecturer).

This information excludes the first and the second answer set where both lec-
turers teach the same course; we can add further information to our specification
to exclude one of the two remaining answer sets, for example:

20. Alice teaches Web Technology.

Now, we end up with one answer set where Alice teaches Web Technology
and Sue teaches Information Technology. We can achieve the same effect by
replacing (20) by an imperative sentence such as:

21. Exclude that Sue teaches Web Technology.

This imperative sentence translates into a constraint of the form:

:- pred(sue, web_technology, teach).

7.2 Arithmetic Operations

PENGASP allows us to specify arithmetic operations in the antecedent of con-
ditional sentences and in imperative sentences (constraints). Numeric variables
(e.g., N1 and N2) that occur in these arithmetic expressions can be used anaphor-
ically and can take part in arithmetic operations:

22. Sue sits in the first office and Alice sits in the second office.
23. If there is an office N1 and there is an office N2 and N2 is equal to

N1 plus 1 then the office N2 is right of the office N1.

Sentence (23) also illustrates how an arithmetic operation can play a defining
role in the description of a particular expression (right of).

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 23

Rolf Schwitter, Stephen C Guy

7.3 Defaults and Exceptions

Default assumptions are necessary in situations where the information is in-
complete but where we still need to be able to draw tentative conclusions [18].
We may be forced to withdraw these conclusions later when new information
becomes available. Below is an example specification that states a default and
two exceptions to this default in PENGASP ; this example is similar to the ASP
example in [9] but here reconstructed in controlled language:

24. Students are normally afraid of math.
25. If a student is enrolled in a Mathematics degree then the student is

not afraid of math.
26. If a student is not provably not enrolled in a Computer Science degree

then the student is abnormally afraid of math.
27. If there is a degree program X1 and there is a degree program X2

and a student is enrolled in the degree program X1 and X1 is not the
same as X2 then the student is not enrolled in the degree program
X2.

The first sentence (24) specifies a default, the second sentence (25) a strong
exception to that default, the third sentence (26) a weak exception, and finally
sentence (27) negative information for degree programs and students using the
local closed world assumption (with the help of two string variables: X1 and X2).
This specification is automatically translated by the PENGASP system into the
following ASP program:

const(math).

prop(A, math, afraid_of) :-

inst(A, student),

not ab(d_afraid_of(A, math)),

not -prop(A, math, afraid_of).

-prop(B, math, afraid_of) :-

inst(B, student),

inst(C, mathematics_degree),

prop(B, C, enrolled_in).

ab(d_afraid_of(D, math)) :-

inst(D, student),

inst(E, computer_science_degree),

not -prop(D, E, enrolled_in).

-prop(F, G, enrolled_in) :-

inst(H, degree_program),

inst(G, degree_program),

inst(F, student),

prop(F, H, enrolled_in),

F != G.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 24

Answer Set Programming for Controlled Language Processing

Note two things here: First, the keyword normally in (24) triggers a default
rule that applies if it is not provable that a students is abnormally afraid of math
(week exception) and if it is not provable that a student is not afraid of math
(strong exception). Second, the expression not provably not enrolled in in (26)
is translated into a weak negation followed by a strongly negated literal in ASP.

8 Conclusion

PENGASP is a fully implemented system that translates specifications writ-
ten in controlled natural language via extended discourse representation struc-
tures into executable ASP programs. The controlled natural language PENGASP

serves as a high-level specification language to ASP programs and can be used
to investigate an emerging specification. We argued that ASP is an attractive
non-monotonic knowledge representation language for controlled language pro-
cessing that allows us in contrast to other existing controlled languages to write
non-monotonic specifications. PENGASP allows us to combine weak and strong
negation to specify a local form of the closed world assumption, to express in-
tegrity and cardinality constraints, to define background theories, to execute
arithmetic operations, and to express defaults and exceptions. ASP generates
flat models that can be directly used for the question answering process. The
PENGASP systems translates questions into rules with specific answer literals in
the head. The question answering process is supported by domain-independent
background axioms that are selectively activated during the translation of a
discourse representation structure into an ASP program.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving,
Cambridge University Press (2003)

2. Baral, C., Dzifcak, J., Son, T.C.: Using Answer Set Programming and Lambda
Calculus to Characterize Natural Language Sentences with Normatives and Ex-
ceptions. In: Proceedings of the Twenty-Third Conference on Artificial Intelligence
(AAAI 2008), pp. 818-823 (2008)

3. Clark, P., Harrison, P., Jenkins, T., Thompson, J., Wojcik, R.: Acquiring and Using
World Knowledge using a Restricted Subset of English. In: The 18th International
FLAIRS Conference (FLAIRS’05), pp. 506-511 (2005)

4. Erdem, E., Yeniterzi, R.: Transforming Controlled Natural Language Biomedical
Queries into Answer Set Programs. In: Proceedings of the Workshop on BioNLP, pp.
117-124, (2009)

5. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto Controlled English for Knowledge
Representation. In: C. Baroglio, P. A. Bonatti, J. Maluszynski, M. Marchiori, A.
Polleres, S. Schaffert, (eds.), Reasoning Web, Fourth International Summer School
2008, LNCS 5224, pp. 104-124 (2008)

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Prac-
tice. In: Synthesis Lectures on Artificial Intelligence and Machine Learning, Vol. 6,
No. 3, pp. 1-238 (2012)

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 25

Rolf Schwitter, Stephen C Guy

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + Control:
Extended Report. To appear in Theory and Practice of Logic Programming (2015)

8. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
Proceedings of the Fifth International Conference on Logic Programming (ICLP), pp.
1070-1080 (1988)

9. Gelfond, M., Yulia Kahl, Y.: Knowledge Representation, Reasoning, and the Design
of Intelligent Agents, The Answer-Set Programming Approach, Cambridge University
Press (2014)

10. Gunning, D., Chaudhri, V.K., Clark, P., Barker, K. et al.: Project Halo Update -
Progress Toward Digital Aristotle. In: AI Magazine, Vol. 31, No. 3 (2010)

11. Guy, S., Schwitter, R.: Architecture of a Web-based Predictive Editor for Con-
trolled Natural Language Processing. In: B. Davis et al. (eds.): CNL 2014, LNAI
8625, pp. 167-178 (2014)

12. Ierusalimschy, R.: Programming in Lua. Lua.org; 3 Edition (2013)
13. Kamp, H., van Genabith, J., Reyle, U.: Discourse Representation Theory. In: D.

Gabbay and F. Guenthner (eds.), Handbook of Philosophical Logic, Vol. 15, pp. 125-
394 (2011)

14. Kuhn, T.: A Survey and Classification of Controlled Natural Languages. In: Com-
putational Linguistics, Vol. 40, No. 1, pp. 121-170 (2014)

15. Lierler, Y., Lifschitz, V.: Logic Programs vs. First-Order Formulas in Textual In-
ference. In: Proceedings of the 10th International Conference on Computational Se-
mantics (IWCS) (2013)

16. Lierler, Y., Schüller, P.: AspCcgTk: Towards Syntactic Parsing with Semantic Dis-
ambiguation by Means of Declarative Programming. In: Association for Logic Pro-
gramming (ALP), Newsletter, December 31 (2014)

17. Lifschitz, V.: What is Answer Set Programming? In: Proceedings of AAAI 2008,
pp. 1594-1597 (2008)

18. Reiter, R.: A Logic for Default Reasoning. In: Artificial Intelligence, Vol. 13, pp.
81-132 (1980)

19. Schüller, P.: Flexible Combinatory Categorial Grammar parsing using the CYK
algorithm and Answer Set Programming. In: Pedro Cabalar and Tran Cao Son (ed),
Logic Programming and Nonmonotonic Reasoning (LPNMR), LNCS 8148, pp. 499-
511 (2013)

20. Schwitter, R.: Controlled Natural Languages for Knowledge Representation. In:
Proceedings of COLING 2010, Beijing, China, pp. 1113-1121 (2010)

21. Schwitter, R.: Controlled Natural Language. In: Sin-Wai Chan (ed.), Routledge
Encyclopedia of Translation Technology, Chapter 28, Routledge, Taylor & Francis
Group (2015)

22. Sharma, A., Vo, N.H., Somak, A., Baral, C.: Towards Addressing the Winograd
Schema Challenge – Building and Using a Semantic Parser and a Knowledge Hunting
Module. In: Proceedings of IJCAI 2015, Buenos Aires, Argentina, pp. 1319-1325,
(2015)

23. Todorova, Y., Gelfond, M.: Toward Question Answering in Travel Domains. In: E.
Erdem et al. (ed.), Correct Reasoning, LNCS 7265, pp. 311-326 (2012)

24. White C., Schwitter, R.: An Update on PENG Light. In: L. Pizzato and R. Schwit-
ter (eds.), Proceedings of ALTA 2009, Sydney, Australia, pp. 80-88 (2009)

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 26

Default Reasoning with Propositional Encoding
of Topological Relations

Przemysław Andrzej Wałęga

University of Warsaw, Institute of Philosophy, Poland
przemek.walega@wp.pl

Abstract. We present a formal system that enables to perform an effec-
tive default reasoning with topological relations. Our approach extends
the well-known propositional Default Logic with a possibility to spec-
ify two sets of information, namely positive (that has to be true) and
negative (that cannot be true). This distinction provides a significant
increase of expressive power of set-theoretical interpretation of proposi-
tional formulae. Additionally to a standard fixed-point semantics of an
extension we provide its operational semantics and prove equivalence of
the abovementioned. We use the latter to establish an effective reasoning
algorithm and implemented in Prolog. As a proof of concept we demon-
strate the system’s application to geographic information system with
real data.

Keywords: Default Reasoning, Qualitative Spatial Reasoning, Com-
monsense Reasoning

1 Introduction

Formal representation and reasoning about space is recognized as a crucial part
of commonsense reasoning and knowledge representation. Recently, a strong need
for non-monotonic and default reasoning in spatial domain has been recognized
[3] and a number of such methods established. Shanahan [17] described default
reasoning for space occupancy problem and aformalized a default rule “space is
normally empty” for systems dealing with incomplete spatial knowledge. Möller
and Wessel [12] presented terminological default rules obtained by means of de-
scription logic terms rather than first-order formulae. Hartley [10] and Hazarika
[11] worked on continuous aspects of space and more recently, methods for ab-
ductive spatial reasoning have been presented, e.g., in [7]. The main fields of
applications of non-monotonic and default spatial reasoning methods are geo-
graphic information systems (GIS), computer-aided architecture design (CAAD)
systems, cognitive spatial systems, visual interpretation and cognitive robotics.
In the flagship applications field, i.e., GIS, modern systems possess powerful
quantitative tools and are able to perform complex numerical transformation
but have very limited qualitative capabilities. However, since GIS often deal
with imprecise and incomplete knowledge while performing geospatial reasoning
about distance, direction, topology and shape, qualitative methods such as the

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 27

2 Przemysław Andrzej Wałęga

qualitative spatial reasoning (QSR) [4] are highly recommended. The abovemen-
tioned need is well-known among researchers and resulted in establishment of a
number of QSR methods especially for GIS systems [20,12,6]. In this paper we
present a new formal method that enables to perform effective default reason-
ing with (qualitative) topological information (e.g., Region Connection Calculus
described below) that may be applied, e.g., to geospatial reasoning systems.
. Region Connection Calculus. One of the main topological QSR methods is
Region Connection Calculus (RCC) [14]. The RCC theory is based on a binary,
reflexive and symmetric relation C(A,B) defined over non-null regions, that
is interpreted as “A is connected with B”. The relation is used to define base
relations, i.e., jointly exclusive and pairwise disjoint (JEPD) binary topological
relations between regions. The RCC-5 introduces 5 base relations, namely “A
is discrete with B”, “A partially overlaps B”,“A is a proper part of B”, “B is a
proper part of A” and “A is equal to B” as depicted in Fig. 1. RCC provides
a simple look-up mechanism for composition of the base relations and is often
used for topological reasoning with incomplete information.

A B

DR(A,B)

A B

PO(A,B)

B A

PP(A,B)

A B

PP−1(A,B)

A = B

EQ(A,B)

Fig. 1: Base relations of RCC-5.

. Default Reasoning. Default reasoning constitutes a crucial feature of non-
monotonic systems. One of the best known default reasoning formalisms was
proposed by Reiter in [15] and is known as Default Logic. It augments classical
first-order logic by default rules of the form α:β1,...,βn

γ , where α, β1, . . . , βn, γ are
first-order formulae and n ∈ N. The intuitive meaning of the rule is “if α is true
and β1, . . . , βn are consistent with the knowledge then by default conclude γ”. A
set of facts obtained from the initial knowledge and proper applying of defaults
is called an extension. Default Logic is deeply studied [1,8] and a number of its
variants and modifications have been proposed [5], e.g., Statistical Default Logic
[19], General Default Logic [21] or Distributed Default Logic [16].

In this paper we present a new formal default reasoning system based on
propositional logic and capable to perform topological reasoning. The use of
propositional logic makes the reasoning relatively simple but on the other hand,
it is expressive enough to represent interesting topological relations, e.g., all
RCC-5 relations. The paper is organized as follows. In Section 2 we describe
topological interpretation of propositional logic. In Section 3 we present modified
definitions of crucial notions, namely a default rule, a default theory and an
extension of a default theory. We provide fixed-point and operational semantics
of an extensions and show their equivalence. In Section 4 we present a method
for automated reasoning and in Section 5 a proof of the concept case-study for
GIS application. Finally, in Section 6 we conclude the paper and indicate our
future work.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 28

Default Reasoning with Propositional Encoding of Topological Relations 3

2 Topological Interpretation of Propositional Calculus

It is well-known [13,18] that there is a connection between formulae of propo-
sitional logic and set-terms. Let the propositional letters denote arbitrary sub-
sets of a non-empty set V (universe), whereas the connectives ¬,∧,∨ denote
set operations of complement, intersection and union respectively. Formally, the
set-theoretical interpretation of propositional logic is obtained by means of a
model 〈V,Σ, d〉, where V is an arbitrary non-empty set, Σ = {A,B,C, . . . } is a
denumerably infinite set of propositional constants and d : Σ → P(V) assigns
to each propositional constant a subset of V . Additionally, d is extended to all
propositional well formed formulae (wffs) as follows:

d(¬φ) = d(φ) , d(φ ∧ ψ) = d(φ) ∩ d(ψ) , d(φ ∨ ψ) = d(φ) ∪ d(ψ) ,

where φ, ψ are propositional wffs, e.g., d(¬A ∧ B → C) = d(A) ∩ d(B) ∪ d(C).
Then, a propositional formula φ is a tautology iff in all models d(φ) = V . It
is shown in [2] that for any propositional wffs φ1, . . . , φn, ψ the following holds
φ1, . . . , φn |= ψ iff in any model 〈V,Σ, d〉 such that d(φ1) = V, . . . , d(φn) = V
hold, d(ψ) = V also holds. As a result we are able to perform set-theoretical
reasoning by means of propositional calculus.

2.1 Propositional Encodings of Spatial Relations

In the abovementioned method it cannot be expressed that some set is not equal
to V . Hence, it cannot be stated that, e.g., set d(A) is not empty or that d(A) is
not a subset of d(B). In order to increase the expressive power we adopt a method
presented in [2], where an additional set of propositional formulae is involved
and interpreted as a set of set-terms that are not equal to V . As an example,
a pair of propositional formulae sets ({¬(A ∧ B)}, {¬A,¬B}) corresponds to
the following pair ({d(A) ∩ d(B) = V }, {A 6= V,B 6= V }) and has an intuitive
meaning that sets d(A), d(B) are non-empty and discrete. We call the former
set of propositional formulae a set of model constraints, whereas the latter a set
of entailment constraints.

We interpret V as a 2-dimensional space, and set-terms as regions of V . Then,
the presented method enables us to interpret model constraints together with
entailment constraints as topological relations between spatial regions. It turns
out that such an interpretation enables to model, e.g., all atomic relations of
RCC-5, as presented in Table 1. In what follows, to shorten the notation we use
the same notation for a propositional letter and a corresponding spatial region,
e.g., a region corresponding to a propositional constant A will be denoted also
by A. It should be fairly clear from the context when we mean a propositional
letter and when a region.

2.2 Spatially Possible Configurations

We call pair consisting of a set of model constraints and a set of entailment con-
straints a spatial configuration (configuration in short). Some configurations are

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 29

4 Przemysław Andrzej Wałęga

Table 1: Representation of base RCC-5 relations.
Relation Description Model Constraints Entailment Constraints
DR(A,B) A and B are discrete ¬(A ∧B) ¬A,¬B
PO(A,B) A partially overlaps B ¬A ∨ ¬B,A→ B,

A→ B,¬A,¬B
PP(A,B) A is a proper part of B A→ B B → A,¬A,¬B
PP−1(A,B) B is a proper part of A B → A A→ B,¬A,¬B
EQ(A,B) A is equal to B A ≡ B ¬A,¬B

spatially possible, whereas others are not. More formally, we call a configuration
impossible iff there is no assignment of sets to propositional letters occurring
in the configuration such that all set-terms corresponding to the configuration
hold. Otherwise, we call the configuration possible. In the following sections we
use a property proved in [2] that a configuration is impossible iff there is some
propositional formula φ occurring in entailment constraints, such that model
constraints propositionally entail φ. This result enables us to obtain an effec-
tive method (reasoning in propositional logic) for checking if a configuration is
possible.

3 Propositional Default Logic with Topological Relations

In this section we introduce a default reasoning method with two sets of proposi-
tional formulae. At first we present preliminary definitions and then fixed-point
and operational semantics of an extension.

3.1 Preliminary Definitions

. Language. Let A be an alphabet consisting of countably many propositional
constants A,B,C, . . . logical constants ¬,∧,∨,→,≡ and punctuation signs. We
work with a propositional language L that consists of wffs over the alphabet A
(denoted by φ, ψ, . . .). As usual, for any set of wffs S and any wffs φ, by S ` φ
we denote that φ is propositionally provable from S. We define for any set of
wffs S, theory of S as ThL(S) = {φ | φ ∈ L and S ` φ}.
. Default Rules. We introduce a default rule δ as an expression of the form
(1), where Φ, Ψ, χ are pairs of sets of propositional wffs. The elements of the
pairs are indexed with + and − respectively as presented in (2).

Φ : Ψ
χ (1)

Φ : Ψ
χ =

〈Φ+, Φ−〉 : 〈Ψ+, Ψ−〉
〈χ+, χ−〉 (2)

The sets indexed with + are interpreted as sets of model constraints, whereas
those indexed with − as sets of entailment constraints. We call Φ a prerequisite,
Ψ a justification and χ a conclusion of δ. We denote Φ, Ψ and χ respectively
by pre(δ), just(δ) and cons(δ). Additionally, pre+(δ) = Φ+, pre−(δ) = Φ−,
just+(δ) = Ψ+, just−(δ) = Ψ−, cons+(δ) = χ+ and cons−(δ) = χ−. In what
follows, to shorten notation, we also denote defaults of the form (1) by (Φ : Ψ/χ).

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 30

Default Reasoning with Propositional Encoding of Topological Relations 5

Our definition of a default differs from a classical definition from Default Logic
[15] however, in this paper by a default (or a default rule) we always mean a rule
of the form (1).
.Default Theory.A default theory in our approach is a tuple T = 〈W+,W−, D〉
such that W+, W− are (finite or infinite) sets of propositional wffs and D is a
(finite or infinite) set of defaults. We interpret W+ and W− as initial sets of
model entailment constraints respectively.

3.2 Fixed-point Semantics of Extension

By an extension of the spatial default theory T we intuitively mean a pair con-
sisting of a set of positive beliefs and a set of negative beliefs that are acceptable
in T . In what follows we give a formal definition based on a fixed-point.

Definition 1 (extension: fixed-point). Let T = 〈W+,W−, D〉 be a default
theory. For any pair of wffs sets U = 〈U+, U−〉 let Γ (U) = 〈Γ+(U+), Γ−(U−)〉
be such that Γ+(U+), Γ−(U−) are the smallest sets satisfying the following
conditions:

1. W+ ⊆ Γ+(U+) ,
2. W− ⊆ Γ−(U−) ,
3. ThLΓ+(U+) = Γ+(U+) ,
4. ThLΓ−(U−) = Γ−(U−) ,
5. If (Φ : Ψ/χ) ∈ D and Φ+ ⊆ Γ+(U+) and Φ− ⊆ Γ−(U−)

and there is no ψ ∈ U− ∪ Ψ− such that U+ ∪ Ψ+ ` ψ,
then χ+ ⊆ Γ+(U+) and χ− ⊆ Γ−(U−) .

Then, E is an extension for T iff E is a fixed point of Γ , i.e., Γ (E) = E.

The conditions 1 . and 2 . provide that the initial knowledge (positive and nega-
tive) is preserved in E. Then, 3 . and 4 . make E+ and E− closed under logical
conclusion, whereas 5 . provides that E is closed under application of defaults,
i.e., if there is a default δ ∈ D that is applicable to E, then cons+(δ) are in
E+ and cons−(δ) are in E−. The notion of applicability of a default is used in
further sections, therefore we provide its formal definition.

Definition 2 (applicability). We say that a default (Φ : Ψ/χ) is applicable to
U = 〈U+, U−〉 iff:
1. Φ is among current beliefs, i.e., Φ+ ⊆ U+ and Φ− ⊆ U−,
2. and Ψ is consistent with U , i.e., there is no ψ ∈ U−∪Ψ− such that U+∪Ψ+ `

ψ.

We say that a default theory T = 〈W+,W−, D〉 is consistent iff there is no
ψ ∈ W− such that W+ ` ψ. Hence, in a consistent default theory, knowledge
〈W+,W−〉 is a spatially possible configuration.

Proposition 1. Each extension of a consistent default theory is a (spatially)
possible configuration.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 31

6 Przemysław Andrzej Wałęga

Proof. Let T = 〈W+,W−, D〉 be a consistent default theory and let E =
〈E+, E−〉 be an extension of T . To show, that there is no ψ ∈ E− such that
E+ ` ψ. The statement follows from the condition 5 . of the Definition 1. �

3.3 Operational Semantics of Extension

The Definition 1 is not constructive and therefore hard to be implemented. In
what follows we present an alternative, operational definition of an extension. It
is operational in a sense that it provides an algorithmic procedure for computing
extensions of a default theory (for an operational semantics of a classical Default
Logic see [1]).

For a default theory T = 〈W+,W−, D〉 let Π = 〈δ0, δ1, . . . 〉 be a (finite or
infinite) sequence of defaults from D without multiple occurrences. We interpret
Π as a possible order of applying defaults. Then, for any Π we define:

– In+(Π) = ThL(W
+ ∪ {cons+(δ) | δ occurs in Π}) is a current positive

knowledge obtained after applying defaults from Π, i.e., formulas believed
to be true,

– In−(Π) = ThL(W
− ∪ {cons−(δ) | δ occurs in Π}) is a current negative

knowledge obtained after applying defaults from Π, i.e., formulas believed
to be false,

– Out+(Π) =
⋃{just+(δ) | δ occurs in Π}) are statements that should no be

inconsistent with the positive knowledge even after applying further defaults,
– Out−(Π) =

⋃{just−(δ) | δ occurs in Π}) are statements that should no
be inconsistent with the negative knowledge even after applying further de-
faults.

We denote by Π[k] the initial segment of Π of length k. Then, we define the
notions of a process, a successful and a closed sequence of defaults as follows.

Definition 3. Let T = 〈W+,W−, D〉 be a default theory and Π a sequence of
defaults from D without multiple occurrences. Then,

– Π is a process of T iff for each δk ∈ Π, pre+(δk) ⊆ In+(Π[k]) and pre−(δk) ⊆
In−(Π[k]), i.e., prerequisites of δk are in current knowledge of Π[k],

– Π is successful iff there is no ψ ∈ In−(Π) ∪ Out−(Π) such that In+(Π) ∪
Out+(Π) ` ψ, otherwise is failed,

– Π is closed in T iff there is no default δ ∈ D that does not belong to Π and
is applicable to 〈In+(Π), In−(Π)〉.

Definition 4 (extension: operationally). We say that E is an extension of
a default theory T iff there is a closed and successful process Π of T such that
E = 〈In+(Π), In−(Π)〉.
. Example 1: Let T = 〈W+,W−, D〉,W+ = {¬(A∧B)},W− = {¬A,¬B,¬C}
and D = {δ1, δ2} such that:

δ1 =
〈∅, ∅〉 : 〈{C → A}, {A→ C}〉
〈{C → A}, {A→ C}〉 , δ2 =

〈∅, ∅〉 : 〈{C → B}, {B → C}〉
〈{C → B}, {B → C}〉 .

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 32

Default Reasoning with Propositional Encoding of Topological Relations 7

a)

V

A

C
B

b)

V

A
B

C

Fig. 2: Extensions of T .

W+,W− have an intuitive meaning that regions
A,B,C are non-empty and A is discrete with B.
Then, there are 2 closed and successful processes
of T , namely Π1 = 〈δ1〉 and Π2 = 〈δ2〉. Therefore
the extensions are as follows E1 = 〈ThL(W+ ∪
{C → A}), ThL(W− ∪ {A → C})〉 and E2 =
〈ThL(W+ ∪ {C → B}), ThL(W− ∪ {B → C})〉
as graphically presented in Fig. 2. Let us check
that Π1 is indeed a successful and closed process.
We have:

1. In+(Π1) = Th(W+ ∪ {C → A}) ,
2. In−(Π1) = Th(W− ∪ {A→ C}) ,
3. Out+(Π1) = {C → A} ,
4. Out−(Π1) = {A→ C} .

Then by the definition Π1 is indeed a successful and closed process of T . A case
for Π2 is analogous.

The following theorem shows that the Definitions 1 and 4 of an extension
(the non constructive and the operational) are equivalent.

Theorem 1. Let T = 〈W+,W−, D〉 be a default theory. E is an extension of
T (in a sense of Definition 4) iff E = Γ (E) (for Γ from the Definition 1).

Proof. First, we prove the implication from left to right. Let Π be a closed
and successful process of T , then E = 〈E+, E−〉 = 〈In+(Π), In−(Π)〉. By the
definitions of In+ and In− we have W+ ⊆ In+, W− ⊆ In−, ThL(In+) = In+

and ThL(In−) = In−. Since Π is closed, the condition 5 . of the Definition 1 is
also fulfilled. Therefore we have Γ+(E+) ⊆ E+ and Γ+(E−) ⊆ E−.

Now, we show that E+ ⊆ Γ+(E+) and E− ⊆ Γ−(E−). We prove inductively
that for any k ∈ N, In+(Π[k]) ⊆ Γ (E+) and In−(Π[k]) ⊆ Γ (E−). For k = 0
inclusions are trivial. Suppose that the statement holds for k and let δk+1 =
(Φ : Ψ/χ). Since Π is a successful process it follows that δk+1 is applicable to
Γ (E). Then, χ+ ⊆ Γ (E+) and χ− ⊆ Γ (E−). Thus, In+(Π[k + 1]) ⊆ Γ (E+)
and In−(Π[k + 1]) ⊆ Γ (E−) which finishes the prove of Γ (E) = E.

Second, we prove the implication from right to left. Let E = Γ (E). To show
that there exists a successful and closed process of T . Fix an arbitrary enumera-
tion {δ0, δ1, . . . } of defaults occurring in D. We construct a sequence of defaults
Π as follows.

1) If every δ ∈ D applicable to 〈In+(Π[i]), In−(Π[i])〉 is already in Π[i], then
finish the construction with Π = Π[i],

2) else take δj ∈ D applicable to 〈In+(Π[i]), In−(Π[i])〉 with the smallest index
j and let Π[i+ 1] = Π[i] _ 〈δj〉 1.

1 As usual, by _ we denote the concatenation operator, i.e., for all sequences a =
〈a0, . . . , an〉, b = 〈b0, . . . , bm〉 the following holds a _ b = 〈a0, . . . , an, b0, . . . , bm〉.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 33

8 Przemysław Andrzej Wałęga

Obviously, Π is a closed process of T . We show by induction on i that Π[i]
is successful (i.e., there is no ψ ∈ In−(Π) ∪ Out−(Π) such that In+(Π) ∪
Out+(Π) ` ψ) and that In+(Π[i]) ⊆ E+ and In−(Π[i]) ⊆ E−. For i = 0 both
conditions are trivially fulfilled. If the conditions are fulfilled for i and there
is δj ∈ D applicable to 〈(In+(Π[i]), In−(Π[i])〉 such that δj /∈ Π[i] then by
the construction step 2) both conditions are fulfilled for i + 1. Hence, Π is a
successful and closed process of T and In+(Π) ⊆ Γ (E+) and In−(Π) ⊆ Γ (E−).
Now we prove that Γ (E+) ⊆ In+(Π) and Γ (E−) ⊆ In−(Π) by showing that
conditions 1 . – 5 . of the Definition 1 are fulfilled for Π, i.e., the following hold:

1. W+ ⊆ In+(Π) ,
2. W− ⊆ In−(Π) ,
3. ThL(In+(Π)) = In+(Π) ,
4. ThL(In−(Π)) = In−(Π) ,
5. If (Φ : Ψ/χ) ∈ D and Φ+ ⊆ In+(Π) and Φ− ⊆ In−(Π)

and there is no ψ ∈ Ψ such that In+(Π) ∪ Ψ+ ` ψ,
then χ+ ⊆ In+(Π) and χ− ⊆ In−(Π) .

Conditions 1.-4. follow from the definitions of In+(Π) and In−(Π), whereas
condition 5. results from the construction step 1) of Π. Due to space limitations
we omit to show that the construction is proper for infinite processes (which is
indeed true and not hard to be shown). �

4 Automated Reasoning Method

In this section we present an algorithm for computing extensions of a default
theory T = 〈W+,W−, D〉. It creates a process tree in which edges are labelled
with δ ∈ D and vertices are the sequences of so far applied defaults. Hence, the
root is an empty sequence and each other vertex v is a sequence Π of edges’
labels that create a path from the root to v. The tree is build in such a way,
that each vertex is a process of T and new vertices are added until there are no
more applicable defaults that have not been applied in a given path. When the
tree is built, each leaf is checked if it is an extension. A more precise description
of the algorithm is as follows.

1) Create a root of a tree with Π = 〈 〉.
2) For each leaf Π of a so far constructed tree that is not marked as failed, do

what follows. For each δ ∈ D applicable to 〈In+(Π), In−(Π)〉 that has not
yet been applied (i.e., pre+(δ) ⊆ In+(Π) and pre−(δ) ⊆ In−(Π) and there
is no ψ ∈ Ψ− such that In+(Π) ∪ Ψ+ ` ψ and δ 6∈ Π) create a new vertex
equal to Π _ 〈δ〉 and create an edge labelled with δ from Π to Π _ 〈δ〉.

3) For each vertex added in step 2) check if it is failed (i.e., if there is ψ ∈
In−(Π) ∪ Out−(Π) such that In+(Π) ∪ Out+(Π) ` ψ). If it is the case
mark the vertex as failed.

4) Repeat steps 2) and 3) until no more vertices are added.
5) Each leaf Π not marked as failed, is marked as successful and closed (S&C

in short) and 〈In(Π), Out(Π)〉 is an extension of T .

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 34

Default Reasoning with Propositional Encoding of Topological Relations 9

For each leaf Π marked as S&C it follows from the construction of the
algorithm that Π is a closed and successful process of T , hence 〈In(Π), Out(Π)〉
is an extension of T . For finite D the algorithm always terminates, because then
there is a finite number of processes (at most 2card(D) which is a number of all
permutations of D).
. Example 2: Let T = 〈W+,W−, D〉 be the same as in Example 1. The process
tree created by the algorithm is presented in Fig. 3. Each vertex Π of the graph
is labelled with In+(Π) and In−(Π) located on the left-hand side and Out+(Π)
and Out−(Π) on the right-hand side of the vertex.

{¬(A ∧ B)}
{¬A,¬B,¬C}

∅
∅

{¬(A ∧ B), C → A}
{¬A,¬B,¬C,A→ C}

{C → A}
{A→ C}

S&C

δ1

{¬(A ∧ B), C → B}
{¬A,¬B,¬C,B → C}

{C → B}
{B → C}

S&C

δ2

Fig. 3: A process tree for a default theory T from Example 1.

We have implemented the abovementioned algorithm in Prolog. The imple-
mentation is straightforward when a procedure determining whether a set of
propositional formulae (propositionally) entail another given formula.

5 Application to Geographic Information System

In this section we present a proof of the concept application of our method. We
use real data from GIS system, as presented in Fig. 4, in order to reason about
possible localization of pubs area in Saxon Garden in Warsaw. The scenario is
similar to the dump localization problem proposed in [9] but uses only topological
information.

Pubs1

Pubs2

Pubs3

Lake

Alley

Square

Tomb
Fountain

Garden

Fig. 4: A Saxon Garden map with possible localizations of a pub area.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 35

10 Przemysław Andrzej Wałęga

The topological representation of the Warsaw Saxon Garden consists of the fol-
lowing regions: the Saxon Garden (G), a lake (L), the Piłsudski Square (S), an
alley (A) and a fountain (F) as depicted in Fig. 4. In what follows we use the
capital letters to denote the abovementioned regions as well as corresponding
propositional constants. The problem to be solved is to decide where should we
locate an area with pubs (P). Additionally to the topological information about
regions localization (depicted in Fig. 4), we consider a following set of default
rules:

δ1 - if it is possible then, the pub area should be located around the lake, i.e.,
PP−1(P,L), because the lake provides a beautiful view,

δ2 - if it is possible then, the pub area should be located around the fountain,
i.e., PP−1(P, F), because the fountain makes the localization more attractive,

δ3 - if it is possible then the pub area should be located on the alley, i.e.,
PO(P,A), because tourists frequently walk there.

Additionally, the pub area cannot be located around the lake and the foun-
tain at a same time, because it is known that the pub area cannot be so
big. Formally, the abovementioned is represented by a default theory T1 =
(W+

1 ,W
−
1 , D1), where W+

1 and W−1 represent the topological relations between
objects, i.e., W+

1 = {L → G,S → G,A → G,F → A,¬(L ∧ A),¬(L ∧ S)},
W−1 = {¬G,¬L,¬S,¬A,¬F,¬S ∨ ¬A,S → A,A → S} and D1 = {δ1, δ2, δ3}
correspond to abovementioned default rules, i.e.,:

S&C

δ3

δ1

S&C

δ3

δ2

S&C

δ1

S&C

δ2

δ3

Fig. 5: A process tree for T1.

δ1 =
〈∅, ∅〉 : 〈{L→ P,¬(F ∧ P)}, {P → L}〉
〈{L→ P,¬(F ∧ P)}, {P → L}〉 ,

δ2 =
〈∅, ∅〉 : 〈{F → P,¬(L ∧ P)}, {P → F}〉
〈{F → P,¬(L ∧ P)}, {P → F}〉 ,

δ3 =
〈∅, ∅〉 : 〈∅, {¬(P ∧A), P → A,A→ P}〉
〈∅, {¬(P ∧A), P → A,A→ P}〉 .

Then the algorithm computing extensions creates a process tree presented in
Fig. 5. Although there are 4 leaves marked as S&C, there are only 2 different
extensions (each extension occurs twice in this process tree). In the first extension
L is a proper part of P and A overlaps P , whereas in the second extension F is
a proper part of P . The computed localizations of P are denoted by Pubs1 and
Pubs2 in Fig. 4. The method enables to check if (a) there exists some extension
of T1, (b) a formula φ holds in some extension of T1 (brave reasoning) and (c)
a formula φ holds in all extensions of T1 (cautious reasoning). As an example,
the method enables to conclude that for some extension L is a proper part of P
and for all extensions P partially overlaps A.

Now, let us add the information that there is a Tomb of the Unknown Soldier
(T) located inside S and inside A and that the following rule has to be fulfilled:

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 36

Default Reasoning with Propositional Encoding of Topological Relations 11

δ5 - if the tomb is located on the alley, then the pub area has to be discrete with
the alley, because the tomb is a place of worship and should be separated
from a place for having fun and parties.

Then, let T2 = 〈W+
1 ,W

−
2 , D2〉, where W−2 = W−1 ∪ {¬T, T → A, T → S} and

D2 = D1 ∪ {δ4}, where the new rule is as follows:

δ4 =
〈{T → A}, ∅〉 : 〈∅, ∅〉
〈{¬(P ∧A)}, ∅〉 .

The process tree for T2 is presented in Fig. 6. There are 2 S&C leaves but they
correspond to one and the same extension. According to this extension L is a
proper part of P and P is discrete with A. The computed localization of P is
denoted by Pubs3 in Fig. 4. Similarly to the classic Default Logic, our approach
is non-monotonic in a sense that in general changing any element of a default
theory, results in an unpredictable change of extensions.

failed

δ4

δ3

S&C

δ4

δ1

failed

δ4

δ3

failed

δ4

δ2

failed

δ4

δ1

failed

δ4

δ2

failed

δ4

δ3

δ3

S&C

δ1

δ4

Fig. 6: A process tree for T2.

6 Conclusions and Future Work

We have shown a formal method for default reasoning about topological re-
lations. The method is decidable and we have provided an effective reasoning
mechanism. Although our method is based on propositional logic, the provided
application example to GIS shows that the method is expressive enough to rep-
resent interesting spatial configurations and may be used to solve some practical
problems.

As a future work we consider determining method’s computational complex-
ity. It is not hard to show that its lower bound is ΣP

2 -hard for brave andΠP
2 -hard

for cautious reasoning (e.g., by a reduction from QBF2,∃ similarly as in [8]). We
suppose that the problems are ΣP

2 -complete and ΠP
2 -complete but we have not

proved the upper bound yet. We also consider increasing expressive power of
the method but with computational complexity remaining as low as possible. In
particular it is interesting how the approach may be extended in order to enable
reasoning about other aspects of space such as distance, shape or orientation.

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 37

12 Przemysław Andrzej Wałęga

Acknowledgments. This research is partially supported by the Polish National
Science Centre grant 2011/02/A/HS1/00395.

References

1. Antoniou, G.: Nonmonotonic reasoning. Mit Press (1997)
2. Bennett, B.: Spatial reasoning with propositional logics. KR 94, 51–62 (1994)
3. Bhatt, M.: (Some) Default and non-monotonic aspects of qualitative spatial rea-

soning. In: AAAI-08 Technical Reports, Workshop on Spatial and Temporal Rea-
soning. pp. 1–6 (2008)

4. Cohn, A.G.: Qualitative spatial representation and reasoning techniques. In: KI-97:
Advances in Artificial Intelligence. pp. 1–30. Springer (1997)

5. Delgrande, J.P., Schaub, T.: On the relation between reiter’s default logic and its
(major) variants. In: Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, pp. 452–463. Springer (2003)

6. Donlon, J., Forbus, K.D.: Using a geographic information system for qualitative
spatial reasoning about trafficability. In: Proc. of the Qualitative Reasoning Work-
shop (1999)

7. Dubba, K., Bhatt, M., Dylla, F., Hogg, D.C., Cohn, A.G.: Interleaved inductive-
abductive reasoning for learning complex event models. In: Inductive Logic Pro-
gramming, pp. 113–129. Springer (2012)

8. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and
Computation 2(3), 397–425 (1992)

9. Guesgen, H.W., Albrecht, J.: Imprecise reasoning in geographic information sys-
tems. Fuzzy Sets and Systems 113(1), 121–131 (2000)

10. Hartley, R.T.: A uniform representation for time and space and their mutual con-
straints. Computers & Mathematics with Applications 23(6), 441–457 (1992)

11. Hazarika, S.M.: Qualitative spatial change: space-time histories and continuity.
Ph.D. thesis, The University of Leeds (2005)

12. Möller, R., Wessel, M.: Terminological default reasoning about spatial informa-
tion: A first step. In: Spatial Information Theory. Cognitive and Computational
Foundations of Geographic Information Science, pp. 189–204. Springer (1999)

13. Mostowski, A.: Thirty years of fundational studies. Blackwell (1996)
14. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection.

KR 92, 165–176 (1992)
15. Reiter, R.: A logic for default reasoning. Artificial intelligence 13(1), 81–132 (1980)
16. Ryzko, D., Rybinski, H.: Distributed default logic for multi-agent system. In: Pro-

ceedings of the IEEE/WIC/ACM international conference on Intelligent Agent
Technology. pp. 204–210. IEEE Computer Society (2006)

17. Shanahan, M.: Default reasoning about spatial occupancy. Artificial Intelligence
74(1), 147–163 (1995)

18. Tarski, A.: Sentential calculus and topology. In: Logic, Semantics, Mathematics.
Oxford Cladendon Press (1956)

19. Wheeler, G.R., Damásio, C.: An implementation of statistical default logic. In:
Logics in artificial intelligence, pp. 121–133. Springer (2004)

20. Yao, X., Thill, J.C.: Spatial queries with qualitative locations in spatial information
systems. Computers, environment and urban systems 30(4), 485–502 (2006)

21. Zhou, Y., Lin, F., Zhang, Y.: General default logic. In: Logic Programming and
Nonmonotonic Reasoning, pp. 241–253. Springer (2007)

Proceedings of the Joint LNMR/NLPAR Workshop at LPNMR 2015 38

