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Abstract. Multi-context systems are a declarative formalism for inter-
linking knowledge-based systems (contexts) that interact via (possibly
nonmonotonic) bridge rules. Interlinking knowledge provides ample op-
portunity for unexpected inconsistencies. These are undesired and come
in different categories: some may simply be repaired automatically, while
others are more serious and must be inspected by a human operator. In
general, no one-fits-all solution exists, since these categories depend on
the application scenario. To nevertheless tackle inconsistencies in a gen-
eral and principled way, we thus propose a declarative policy language
for inconsistency management in multi-context systems. We define its
syntax and semantics, discuss methodologies for applying the language
in real world applications, and outline an implementation by rewriting
to acthex, a formalism extending Answer Set Programs.

1 Introduction

The trend to interlink data and information through networked infrastructures,
which started out by the spread of the Internet, continues and more recently ex-
tends to richer entities of knowledge and knowledge processing. This challenges
knowledge management systems that aim at powerful knowledge based appli-
cations, in particular when they are built by interlinking smaller existing such
systems, and this integration shall be done in a principled way beyond ad-hoc
approaches.

Declarative programming methods, and in particular logic programming
based approaches, provide rigorous means for developing knowledge based sys-
tems through formal representation and model-theoretic evaluation of the knowl-
edge at hand. Extending this technology to advanced scenarios of interlinked
information sources is a highly relevant topic of research in declarative knowledge
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representation and reasoning. For instance, Multi-context systems (MCSs) [5],
based on [7,22], are a generic formalism that captures heterogeneous knowl-
edge bases (contexts) which are interlinked using (possibly nonmonotonic) bridge
rules.

The advantages of modular systems, i.e., of building a system from smaller
parts, however, poses the problem of unexpected inconsistencies due to unin-
tended interaction of system parts. Such inconsistencies are undesired in gen-
eral, since inference becomes trivial (under common principles; reminiscent of ex
falso sequitur quodlibet). The problem of explaining reasons for inconsistency in
MCSs has been addressed in [16]: several independent inconsistencies can exist
in a MCS, and each inconsistency usually can be repaired in more than one
possible way.

For example, imagine a hospital information system which links several data-
bases in order to suggest treatments for patients. A simple inconsistency which
can be automatically ignored would be if a patient states her birth date correctly
at the front desk, but swaps two digits filling in a form at the X-ray department.
An entirely different type of inconsistency is (at least as far as the health of
the patient is concerned), if the patient needs treatment, but all options are in
conflict with some allergy of the patient. Attempting an automatic repair may
not be a viable option in this case: a doctor should inspect the situation and
make a decision.

In view of such scenarios, tackling inconsistency requires individual strate-
gies and targeted (re)actions, depending on the type of inconsistency and on the
application. In this work, we thus propose the declarative Inconsistency Manage-
ment Policy Language (impl), which provides a means to specify inconsistency
management strategies for MCSs. Our contributions are briefly summarized as
follows.

• We define the syntax of impl, inspired by Answer Set Programming (ASP)
[21] following the syntax of ASP programs. In particular, we specify the
input for policy reasoning, as being provided by dedicated reserved predi-
cates. These predicates encode inconsistency analysis results in terms of the
respective structures in [16]. Furthermore, we specify action predicates that
can be derived by rules. Actions provide a means to counteract inconsistency
by modifying the MCS, and may involve interaction with a human operator.

• We define the semantics of impl in a three-step process. In a first step,
models of a given policy are calculated. Then, in a second step, the effects
of actions which are present in such a model are determined (this possibly
involves user interaction). Finally, in a third step, these effects are applied
to the MCS.

• On the basis of the above, we provide methodologies for utilizing impl in
application scenarios, and briefly discuss useful language extensions.

• Finally, we give the necessary details of a concrete realization of impl by
rewriting it to the acthex formalism [2] which extends ASP programs with
external computations and actions.
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The remainder of the paper is organized as follows: we first introduce MCS
and notions for explaining inconsistency in MCSs in Sect. 2. We then define syn-
tax and semantics of the impl policy language in Sect. 3, describe methodologies
for applying impl in practice in Sect. 4, provide a possibility for realizing impl

by rewriting to acthex in Sect. 5, and conclude the paper in Sect. 6.

2 Preliminaries

Multi-context systems (MCSs). A heterogeneous nonmonotonic MCS [5]
consists of contexts, each composed of a knowledge base with an underlying logic,
and a set of bridge rules which control the information flow between contexts.

A logic L= (KBL,BSL,ACCL) is an abstraction which captures many
monotonic and nonmonotonic logics, e.g., classical logic, description logics, or
default logics. It consists of the following components, the first two intuitively
define the logic’s syntax, the third its semantics:

• KBL is the set of well-formed knowledge bases of L. We assume each element
of KBL is a set of “formulas”.

• BSL is the set of possible belief sets, where a belief set is a set of “beliefs”.
• ACCL : KBL → 2BSL assigns to each KB a set of acceptable belief sets.

Since contexts may have different logics, this allows to model heterogeneous
systems.

Example 1. For propositional logic Lprop under the closed world assumption over
signature Σ, KB is the set of propositional formulas over Σ; BS is the set
of deductively closed sets of propositional Σ-literals; and ACC(kb) returns for
each kb a singleton set, containing the set of literal consequences of kb under the
closed world assumption. ��

A bridge rule models information flow between contexts: it can add informa-
tion to a context, depending on the belief sets accepted at other contexts. Let
L = (L1, . . . , Ln) be a tuple of logics. An Lk-bridge rule r over L is of the form

(k : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where k and ci are context identifiers, i.e., integers in the range 1, . . . , n, pi is an
element of some belief set of Lci

, and s is a formula of Lk. We denote by hb (r) the
formula s in the head of r and by B(r) = {(c1 : p1), . . . ,not (cj+1 : pj+1), . . .}
the set of body literals (including negation) of r.

A multi-context system M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈ KBi a
knowledge base, and br i is a set of Li-bridge rules over (L1, . . . , Ln). By IN i =
{hb (r) | r ∈ bri} we denote the set of possible inputs of context Ci added by
bridge rules. For each H ⊆ IN i it is required that kbi ∪H ∈ KBLi

. By brM =
�n

i=1 br i we denote the set of all bridge rules of M .
The following running example will be used throughout the paper.
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Example 2 (generalized from [16]). Consider a MCSM1 in a hospital which com-
prises the following contexts: a patient database Cdb , a blood and X-Ray analy-
sis database Clab , a disease ontology Conto , and an expert system Cdss which
suggests proper treatments. Knowledge bases are given below; initial uppercase
letters are used for variables and description logic concepts.

kbdb = { person(sue, 02/03/1985 ), allergy(sue, ab1 )},
kb lab = { customer(sue, 02/03/1985 ), test(sue, xray , pneumonia),

test(Id , X, Y )→ ∃D : customer(Id , D)),
customer(Id , X) ∧ customer(Id , Y )→ X = Y },

kbonto = { Pneumonia �Marker � AtypPneumonia},
kbdss = { give(Id , ab1 ) ∨ give(Id , ab2 )← need(Id , ab).

give(Id , ab1 )← need(Id , ab1 ).
¬give(Id , ab1 )← not allow(Id , ab1 ), need(Id ,Med).}.

Context Cdb uses propositional logic (see Example 1) and provides informa-
tion that Sue is allergic to antibiotics ‘ab1 ’. Context Clab is a database with
constraints which stores laboratory results connected to Sue: pneumonia was
detected in an X-ray. Constraints enforce, that each test result must be linked
to a customer record, and that each customer has only one birth date. Conto

specifies that presence of a blood marker in combination with pneumonia in-
dicates atypical pneumonia. This context is based on AL, a basic description
logic [1]: KBonto is the set of all well-formed theories within that description
logic, BSonto is the powerset of the set of all assertions C(o) where C is a con-
cept name and o an individual name, and ACConto returns the set of all concept
assertions entailed by a given theory. Cdss is an ASP program that suggests a
medication using the give predicate.

Schemas for bridge rules of M1 are as follows:

r1 = (lab : customer(Id ,Birthday))← (db : person(Id ,Birthday)).
r2 = (onto : Pneumonia(Id)) ← (lab : test(Id , xray , pneumonia)).
r3 = (onto : Marker(Id)) ← (lab : test(Id , bloodtest ,m1 )).
r4 = (dss : need(Id , ab)) ← (onto : Pneumonia(Id)).
r5 = (dss : need(Id , ab1 )) ← (onto : AtypPneumonia(Id)).
r6 = (dss : allow(Id , ab1 )) ← not (db : allergy(Id , ab1 ).

Rule r1 links the patient records with the lab database (so patients do not need
to enter their data twice). Rules r2 and r3 provide test results from the lab to the
ontology. Rules r4 and r5 link disease information with medication requirements,
and r6 associates acceptance of the particular antibiotic ‘ab1 ’ with a negative
allergy check on the patient database. ��

Equilibrium semantics [5] selects certain belief states of a MCSM = (C1, . . . , Cn)
as acceptable. A belief state is a list S= (S1, . . . , Sn), s.t. Si ∈BSi. A bridge
rule (1) is applicable in S iff for 1≤ i≤ j: pi ∈ Sci

and for j < l ≤m: pl /∈ Scl
.

Let app(R, S) denote the set of bridge rules in R that are applicable in belief state
S. Then a belief state S = (S1, . . . , Sn) of M is an equilibrium iff, for 1 ≤ i ≤ n,
the following condition holds: Si ∈ ACCi(kbi ∪ {hd(r) | r ∈ app(br i, S)}).
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For simplicity we will disregard the issue of grounding bridge rules (see [20]),
and only consider ground instances of bridge rules. In the following, with
r1, . . . , r6 we refer to the ground instances of the respective bridge rules in Ex-
ample 2, where variables are replaced by Id �→ sue and Birthday �→ 02/03/1985
(all other instances are irrelevant).

Example 3 (ctd). MCSM1 has one equilibrium S=(Sdb , Slab , Sonto , Sdss), where
Sdb = kbdb , Slab = {customer(sue, 02/03/1985 ), test(sue, xray , pneumonia)},
Sonto = {Pneumonia(sue)}, andSdss = {need(sue, ab), give(sue, ab2 ),¬give(sue,
ab1 )}. Moreover, bridge rules r1, r2, and r4 are applicable under S. ��

Explaining Inconsistency in MCSs. Inconsistency in a MCS is the lack of
an equilibrium [16]. Note that no equilibrium may exist even if all contexts are
‘paraconsistent’ in the sense that for all kb ∈ KB,ACC(kb) is nonempty. No
information can be obtained from an inconsistent MCS, e.g., inference tasks like
brave or cautious reasoning on equilibria become trivial. To analyze, and even-
tually repair, inconsistency in a MCS, we use the notions of consistency-based
diagnosis and entailment-based inconsistency explanation [16], which character-
ize inconsistency by sets of involved bridge rules.

Intuitively, a diagnosis is a pair (D1, D2) of sets of bridge rules which repre-
sents a concrete system repair in terms of removing rules D1 and making rules
D2 unconditional. The intuition for considering rules D2 as unconditional is
that the corresponding rules should become applicable to obtain an equilibrium.
One could consider more fine-grained changes of rules such that only some body
atoms are removed instead of all. However, this increases the search space while
there is little information gain: every diagnosis (D1, D2) as above, together with
a witnessing equilibrium S, can be refined to such a generalized diagnosis. Dual
to that, inconsistency explanations (short: explanations) separate independent
inconsistencies. An explanation is a pair (E1, E2) of sets of bridge rules, such that
the presence of rules E1 and the absence of heads of rules E2 necessarily makes
the MCS inconsistent. In other words, bridge rules in E1 cause an inconsistency
in M which cannot be resolved by considering additional rules already present
in M or by modifying rules in E2 (in particular making them unconditional).
See [16] for formal definitions of these notions, relationships between them, and
more background discussion.

Example 4 (ctd). Consider a MCS M2 obtained from M1 by modifying kb lab : we
replace customer(sue, 02/03/1985 ) by the two facts customer(sue, 03/02/1985 )
and test(sue, bloodtest , m1 ), i.e., we change the birth date, and add a blood
test result. M2 is inconsistent with two minimal inconsistency explanations
e1= ({r1}, ∅) and e2=({r2, r3, r5}, {r6}): e1 characterizes the problem, that Clab

does not accept any belief set because constraint customer(Id , X)∧customer
(Id , Y )→X = Y is violated. Another independent inconsistency is pointed out
by e2: if e1 is repaired, then Conto accepts AtypPneumonia(sue), therefore r5
imports the need for ab1 into Cdss which makes Cdss inconsistent due to Sue’s
allergy. Moreover, the following minimal diagnoses exist for M2: ({r1, r2}, ∅),
({r1, r3}, ∅), ({r1, r5}, ∅), and ({r1}, {r6})

�

. For instance, diagnosis ({r1}, {r6})



6 T. Eiter et al.

removes bridge rule r1 fromM2 and adds r6 unconditionally toM2, which yields
a consistent MCS. ��

3 Policy Language IMPL

Dealing with inconsistency in an application scenario is difficult, because even
if inconsistency analysis provides information how to restore consistency, it is
not obvious which choice of system repair is rational. It may not even be clear
whether it is wise at all to repair the system by changing bridge rules.

Example 5 (ctd). Repairing e1 by removing r1 and thereby ignoring the birth
date (which differs at the granularity of months) may be the desired reaction and
could very well be done automatically. On the contrary, repairing e2 by ignoring
either the allergy or the illness is a decision that should be left to a doctor, as
every possible repair could cause serious harm to Sue. ��

Therefore, managing inconsistency in a controlled way is crucial. To address
these issues, we propose the declarative Inconsistency Management Policy Lan-
guage impl, which provides a means to create policies for dealing with inconsis-
tency in MCSs. Intuitively, an impl policy specifies (i) which inconsistencies are
repaired automatically and how this shall be done, and (ii) which inconsistencies
require further external input, e.g., by a human operator, to make a decision on
how and whether to repair the system. Note that we do not rule out automatic
repairs, but — contrary to previous approaches — automatic repairs are done
only if a given policy specifies to do so, and only to the extent specified by the
policy.

Since a major point of MCSs is to abstract away context internals, impl

treats inconsistency by modifying bridge rules. For the scope of this work we
delegate any potential repair by modifying the kb of a context to the user. The
effect of applying an impl policy to an inconsistent MCS M is a modification
(A,R), which is a pair of sets of bridge rules which are syntactically compatible
with M . Intuitively, a modification specifies bridge rules A to be added to M
and bridge rules R to be removed from M , similar as for diagnoses without
restriction to the original rules of M .

An impl policy P for a MCS M is intended to be evaluated on a set of
system and inconsistency analysis facts, denoted EDBM , which represents in-
formation about M , in particular EDBM contains atoms which describe bridge
rules, minimal diagnoses, and minimal explanations of M .

The evaluation of P yields certain actions to be taken, which potentially
interact with a human operator, and modify the MCS at hand. This modification
has the potential to restore consistency of M .

In the following we formally define syntax and semantics of impl.

3.1 Syntax

We assume disjoint sets C, V , Built , and Act , of constants, variables, built-in
predicate names, and action names, respectively, and a set of ordinary predicate
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names Ord ⊆ C. Constants start with lowercase letters, variables with uppercase
letters, built-in predicate names with #, and action names with @. The set of
terms T is defined as T =C ∪V .

An atom is of the form p(t1, . . . , tk), 0 ≤ k, ti ∈T , where p ∈ Ord ∪ Built ∪
Act is an ordinary predicate name, builtin predicate name, or action name. An
atom is ground if ti ∈ C for 0 ≤ i ≤ k. The sets AAct , AOrd , and ABuilt , called
sets of action atoms, ordinary atoms, and builtin atoms, consist of all atoms over
T with p∈Act , p∈Ord , respectively p∈Built .

Definition 1. An impl policy is a finite set of rules of the form

h← a1, . . . , aj , not aj+1, . . . , not ak. (2)

where h is an atom from AOrd ∪AAct , every ai, 1 ≤ i ≤ k, is from AOrd ∪ABuilt ,
and ‘not‘ is negation as failure.

Given a rule r, we denote by H(r) its head, by B+(r) = {a1, . . . , aj} its
positive body atoms, and by B−(r) = {aj+1, . . . , ak} its negative body atoms.
A rule is ground if it contains ground atoms only. A ground rule with k = 0 is
a fact. As in ASP, a rule must be safe, i.e., variables in H(r) or in B−(r) must
also occur in B+(r). For a set of rules R, we use cons(R) to denote the set of
constants from C appearing in R, and pred(R) for the set of ordinary predicate
names and action names (elements from Ord ∪ Act) in R.

We next describe how a policy represents information about the MCS M
under consideration.

System and Inconsistency Analysis Predicates. Entities, diagnoses, and
explanations of the MCS M at hand are represented by a suitable finite set
CM ⊆ C of constants which uniquely identify contexts, bridge rules, beliefs,
rule heads, diagnoses, and explanations. For convenience, when referring to an
element represented by a constant c we identify it with the constant, e.g., we
write ‘bridge rule r’ instead of ‘bridge rule of M represented by constant r’.

Reserved atoms use predicates from the set Cres ⊆Ord of reserved pred-
icates, with Cres = {ruleHead , ruleBody

+, ruleBody−, context ,modAdd ,modDel ,
diag , explNeed , explForbid}. They represent the following information.

• context(c) denotes that c is a context.
• ruleHead(r, c, s) denotes that bridge rule r is at context c with head formula
s.

• ruleBody+(r, c, b) (resp., ruleBody−(r, c, b)) denotes that bridge rule r con-
tains body literal ‘(c : b)’ (resp., ‘not (c : b)’).

• modAdd(m, r) (resp., modDel(m, r)) denotes that modification m adds
(resp., deletes) bridge rule r. Note that r is represented using ruleHead and
ruleBody .

• diag(m) denotes that modification m is a minimal diagnosis in M .
• explNeed(e, r) (resp., explForbid(e, r)) denotes that the minimal explanation
(E1, E2) identified by constant e contains bridge rule r ∈ E1 (resp., r ∈ E2
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• modset(ms ,m) denotes that modification m belongs to the set of modifica-
tions identified by ms .

Example 6 (ctd). We can represent r1, r5, and the diagnosis ({r1, r5}, ∅) as the
set of reserved atoms Iex = {ruleHead(r1, clab , ‘customer(sue, 02/03/1985 )�),
ruleBody+(r1, cdb , ‘person(sue, 02/03/1985 )

�), ruleHead(r5,cdss ,‘need(sue,ab1 )
�),

ruleBody+(r5, conto , ‘AtypPneumonia(sue)�), modDel(d, r1), modDel(d, r5), diag

(d)} where constant d identifies the diagnosis. ��

Further knowledge used as input for policy reasoning can easily be defined
using additional (supplementary) predicates. Note that predicates over all expla-
nations or bridge rules can easily be defined by projecting from reserved atoms.
Moreover, to encode preference relations (e.g., as in [17]) between system parts,
diagnoses, or explanations, an atom preferredContext(c1, c2) could denote that
context c1 is considered more reliable than context c2. The extensions of such
auxiliary predicates need to be defined by the rules of the policy or as additional
input facts (ordinary predicates), or they are provided by the implementation
(built-in predicates), i.e., the ‘solver’ used to evaluate the policy. The rewriting
to acthex given in Sect. 5.2 provides a good foundation for adding supplemen-
tary predicates as built-ins, because the acthex language has generic support for
calls to external computational sources. A possible application would be to use a
preference relation between bridge rules that is defined by an external predicate
and can be used for reasoning in the policy.

Towards a more formal definition of a policy input, we distinguish the set
BM of ground atoms built from reserved predicates Cres and terms from CM ,
called MCS input base, and the auxiliary input base BAux given by predicates
over Ord \Cres and terms from C. Then, the policy input base BAux ,M is defined
as BAux ∪BM . For a set I ⊆ BAux ,M , I |BM

and I |BAux
denote the restriction of

I to predicates from the respective bases.
Now, given an MCS M , we say that a set S ⊆ BM is a faithful representa-

tion of M wrt. a reserved predicate p ∈ Cres \ {modset} iff the extension of p
in S exactly characterizes the respective entity or property of M (according to
a unique naming assignment associated with CM as mentioned). For instance,
context(c) ∈ S iff c is a context of M , and correspondingly for the other pred-
icates. Consequently, S is a faithful representation of M iff it is a faithful rep-
resentation wrt. all p in Cres \ {modset} and the extension of modset in S is
empty.

A finite set of facts I ⊆ BAux ,M containing a faithful representation of all
relevant entities and properties of an MCS qualifies as input of a policy, as
defined next.

Definition 2. A policy input I wrt. MCS M is a finite subset of the policy input
base BAux ,M , such that I |BM

is a faithful representation of M .

In the following, we denote by EDBM a policy input wrt. a MCS M . Note
that reserved predicate modset has an empty extension in a policy input (but
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corresponding atoms will be of use later on in combination with actions). Given
a set of reserved atoms I , let c be a constant that appears as a bridge rule iden-
tifier in I . Then ruleI (c) denotes the corresponding bridge rule represented by
reserved atoms ruleHead , ruleBody+, and ruleBody− in I with c as their first ar-
gument. Similarly we denote bymod I (m)= (A,R) (resp., bymodset I (m)= {(A1,
R1), . . .}) the modification (resp., set of modifications) represented in I by the
respective predicates and identified by constant m.

Subsequently, we call a modification m that is projected to rules located
at a certain context c the projection of m to context c (and similarly for sets
of modifications). Formally we denote by mod I (m)|c (resp., modset I (m)|c) the
projection of modification (resp., set of modifications) m in I to context c.

Example 7 (ctd). In the previous example Iex , ruleIex (r1 ) refers to rule r1; more-
over mod Iex (d)= ({r1, r5}, ∅) and the projection of modification d to cdss is
({r5}, ∅). ��

A policy can create representations of new rules, modifications, and sets of
modifications, because reserved atoms are allowed to occur in heads of policy
rules. However such new entities require new constants identifying them. To
tackle this issue, we next introduce a facility for value invention.

Value Invention via Builtin Predicates ‘#idk’. Whenever a policy specifies
a new rule and uses it in some action, the rule must be identified with a constant.
The same is true for modifications and sets of modifications. Therefore, impl

contains a family of special builtin predicates which provide policy writers a
means to comfortably create new constants from existing ones.

For this purpose, builtin predicates of the form #idk(c
�, c1, . . . , ck) may occur

in rule bodies (only). Their intended usage is to uniquely (and thus reproducibly)
associate a new constant c� with a tuple c1, . . . , ck of constants (for a formal
semantics see the definitions for action determination in Sect. 3.2).

Note that this value invention feature is not strictly necessary, as new con-
stants can be obtained via defining an order relation over all constants, a pool
of unused constants, and auxiliary rules that use the next unused constant for
each new constant that is required by the program. However, a dedicated value
invention builtin simplifies policy writing and improves policy readability.

Example 8 . Assume one wants to consider projections of modifications to con-
texts as specified by the extension of an auxiliary predicate projectMod(M,C).
The following policy fragment achieves this using a value invention builtin to
assign a unique identifier with every projection (recorded in the extension of
another auxiliary predicate projectedModId(M �, M , C)).































projectedModId(M �,M,C)← projectMod(M,C),
#id3(M

�, pm id ,M,C);
modAdd(M �, R)← modAdd(M,R), ruleHead(R,C, S),

projectedModId(M �,M,C);
modDel(M �, R)← modDel(M,R), ruleHead(R,C, S),

projectedModId(M �,M,C)































(3)
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Intuitively, we identify new modifications by new ids cpmid ,M,C obtained fromM
and C via #id3 and an auxiliary constant pm id /∈ CM . The latter simply serves
the purpose of disambiguating constants used for projections of modifications. ��

Besides representing modifications of a MCS aiming at resolving inconsis-
tency, an important feature of impl is to actually apply them. Actions serve this
purpose.

Actions. Actions alter the MCS at hand and may interact with a human op-
erator. According to the change that an action performs, we distinguish system
actions which modify the MCS in terms of entire bridge rules that are added
and/or deleted, and rule actions which modify a single bridge rule. Moreover,
the changes can depend on external input, e.g., obtained by user interaction. In
the latter case, the action is termed interactive. Accumulating the changes of
all actions yields an overall modification of the MCS. We formally define this
intuition when addressing the semantics in Sect. 3.2.

Syntactically, we use @ to prefix action names from Act , and those of the
predefined actions listed below are reserved action names. Let M be the MCS
under consideration, then the following predefined actions are (non-interactive)
system actions:

• @delRule(r) removes bridge rule r from M .
• @addRule(r) adds bridge rule r to M .
• @applyMod(m) applies modification m to M .
• @applyModAtContext(m, c) applies those changes in m to the MCS that add
or delete bridge rules at context c (i.e., applies the projection of m to c).

Note that a policy might specify conflicting effects, i.e., the removal and the
addition of a bridge rule at the same time. In this case the semantics gives
preference to addition.

The predefined actions listed next are rule actions:

• @addRuleCondition+(r, c, b) (resp., @addRuleCondition−(r, c, b)) adds body
literal (c : b) (resp., not (c : b)) to bridge rule r.

• @delRuleCondition+(r, c, b) (resp., @delRuleCondition−(r, c, b)) removes
body literal (c : b) (resp., not (c : b)) from bridge rule r.

• @makeRuleUnconditional(r) makes bridge rule r unconditional.

Since these actions can modify the same rule, this may also result in conflicting
effects, where again addition is given preference over removal by the semantics.
(Moreover, rule modifications are given preference over addition or removal of
the entire rule.)

Eventually, the subsequent predefined actions are interactive (system) ac-
tions, i.e., they involve a human operator:

• @guiSelectMod(ms) displays a GUI for choosing from the set of modifications
ms . The modification chosen by the user is applied to M .
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• @guiEditMod(m) displays a GUI for editing modification m. The resulting
modification is applied to M .1

• @guiSelectModAtContext(ms , c) projects modifications in ms to c, displays
a GUI for choosing among them and applies the chosen modification to M .

• @guiEditModAtContext(m, c) projects modification m to context c, displays
a GUI for editing it, and applies the resulting modification to M .

As we define formally in Sect. 3.2, changes of individual actions are not applied
directly, but collected into an overall modification which is then applied to M
(respecting preferences in case of conflicts as stated above). Before turning to a
formal definition of the semantics, we give example policies.

Example 9 (ctd). Figure 1 shows three policies that can be useful for managing
inconsistency in our running example. Their intended behavior is as follows.
P1 deals with inconsistencies at Clab : if an explanation concerns only bridge
rules at Clab , an arbitrary diagnosis is applied at Clab , other inconsistencies are
not handled. Applying P1 to M2 removes r1 at Clab , the resulting MCS is still
inconsistent with inconsistency explanation e2, as only e1 has been automatically
fixed. P2 extends P1 by adding an ‘inconsistency alert formula’ to Clab if an

Fig. 1. Sample impl policies for our running example.

1 It is suggestive to also give the operator a possibility to abort, causing no modifica-
tion at all to be made, however we do not specify this here because a useful design
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inconsistency was automatically repaired at that context. Finally, P3 is a fully
manual approach which displays a choice of all minimal diagnoses to the user and
applies the user’s choice. Note, that we did not combine automatic actions and
user-interactions here since this would result in more involved policies (and/or
require an iterative methodology; cf. Sect. 4). ��

We refer to the predefined impl actions @delRule, @addRule, @guiSelectMod ,
and @guiEditMod as core actions, and to the remaining ones as comfort actions.
Comfort actions exist for convenience of use, providing means for projection and
for rule modifications. They can be rewritten to core actions as sketched in the
following example.

Example 10 To realize @applyMod(M ) and @applyModAtContext(M,C) using
the core language, we replace them by applyMod(M ) and applyModAtContext
(M,C), respectively, use rules (3) from Example 8, and add the following set of
rules.























@addRule(R)← applyMod(M ), modAdd(M,R);
@delRule(R)← applyMod(M ), modDel(M,R);

projectMod(M,C)← applyModAtContext(M,C);
applyMod(M �)← applyModAtContext(M,C),

projectedModId(M �,M,C)























(4)

��

This concludes our introduction of the syntax of impl, and we move on to
a formal development of its semantics which so far has only been conveyed by
accompanying intuitive explanations.

3.2 Semantics

The semantics of applying an impl policy P to a MCS M is defined in three
steps:

– Actions to be executed are determined by computing a policy answer set of
P wrt. policy input EDBM .

– Effects of actions are determined by executing actions. This yields modifi-
cations (A,R) of M for each action. Action effects can be nondeterministic
and thus only be determined by executing respective actions (which is par-
ticularly true for user interactions).

– Effects of actions are materialized by building the componentwise union over
individual action effects and applying the resulting modification to M .

In the remainder of this section, we introduce the necessary definitions for a
precise formal account of these steps.

Action Determination.We define impl policy answer sets similar to the stable
model semantics [21]. Given a policy P and a policy input EDBM , let idk be
a fixed (built-in) family of one-to-one mappings from k-tuples c1, . . . , ck, where
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ci ∈ cons(P ∪ EDBM ) for 1 ≤ i ≤ k, to a set Cid ⊂C of ‘fresh’ constants, i.e.,
disjoint from cons(P ∪ EDBM ).2 Then the policy base BP,M of P wrt. EDBM

is the set of ground impl atoms and actions, that can be built using predicate
symbols from pred(P ∪EDBM ) and terms from UP,M = cons(P ∪EDBM )∪Cid ,
called policy universe.

The grounding of P , denoted by grnd(P ), is given by grounding its rules
wrt. UP,M as usual. Note that, since cons(P ∪ EDBM ) is finite, only a finite
amount of mapping functions idk is used in P . Hence only a finite amount of
constants Cid is required, and therefore UP,M , BP,M , and grnd(P ) are finite as
well.

An interpretation is a set of ground atoms I ⊆ BP,M . We say that I models
an atom a ∈ BP,M , denoted I |= a iff (i) a is not a built-in atom and a∈ I , or
(ii) a is a built-in atom of the form #idk(c, c1, . . . , ck) and c = idk(c1, . . . , ck).
I models a set of atoms A ⊆ BP,M , denoted I |=A, iff I |= a for all a ∈ A. I
models the body of rule r, denoted as I |=B(r), iff I |= a for every a∈B+(r) and
I �|= a for all a∈B−(r); and for a ground rule r, I |= r iff I |=H(r) or I �|=B(r).
Eventually, I is a model of P , denoted I |=P , iff I |= r for all r∈ grnd(P ).
The FLP-reduct [19] of P wrt. an interpretation I , denoted fP I , is the set of
all r ∈ grnd(P ) such that I |= B(r).3

Definition 3 (Policy Answer Set). Given an MCS M , let P be an impl

policy, and let EDBM be a policy input wrt. M . An interpretation I ⊆BP,M is a
policy answer set of P for EDBM iff I is a ⊆-minimal model of fP I ∪ EDBM .

We denote by AS(P ∪ EDBM ) the set of all policy answer sets of P for EDBM .

Effect Determination. We define the effects of action predicates @a∈Act
by nondeterministic functions f@a. Nondeterminism is required for interactive
actions. An action is evaluated wrt. an interpretation of the policy and yields an
effect according to its type: the effect of a system action is a modification (A,R)
of the MCS, in the following sometimes denoted system modification, while the
effect of a rule action is a rule modification (A,R)r wrt. a bridge rule r of M ,
i.e., in this case A is a set of bridge rule body literals to be added to r, and R
is a set of bridge rule body literals to be removed from r.

Definition 4. Given an interpretation I, and a ground action α of form
@a(t1, . . . , tk), the effect of α wrt. I is given by effI(α) = f@a(I, t1, . . . , tk),
where effI(α) is a system modification if α is a system action, and a
rule modification if α is a rule action.

Action predicates of the impl core fragment have the following semantic func-
tions.

2 Disjointness ensures finite groundings; without this restriction, e.g., the program
{p(C �) ← #id1(C

�, C); p(C)} would not have finite grounding.
3 We use the FLP reduct for compliance with acthex (used for realization in Sect. 5),
but for the language considered, the Gelfond-Lifschitz reduct would yield an equiv-
alent definition.
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– f@delRule(I, r) = (∅, {ruleI (r)}).
– f@addRule(I, r) = ({ruleI (r)}, ∅).
– f@guiSelectMod (I,ms) = (A,R) where (A,R) is the user’s selection after being
displayed a choice among all modifications in {(A1, R1), . . .} = modset I (ms).

– f@guiEditMod (I,m) = (A�, R�), where (A�, R�) is the result of user interaction
with a modification editor that is preloaded with modification (A,R) =
mod I (m).

Note that the effect of any core action in I can be determined independently from
the presence of other core actions in I , and rule modifications are not required
to define the semantics of core actions. However, rule modifications are needed
to capture the effect of comfort actions. Moreover, adding and deleting rule
conditions, and making a rule unconditional can modify the same rule, therefore
such action effects yield accumulated rule modifications.

More specifically, the semantics of impl comfort actions is defined as follows:

– f@delRuleCondition+(I, r, c, b) = (∅, {(c : b)})r.
– f@delRuleCondition−(I, r, c, b) = (∅, {not (c : b)})r.
– f@addRuleCondition+(I, r, c, b) = ({(c : b)}, ∅)r.
– f@addRuleCondition−(I, r, c, b) = ({not (c : b)}, ∅)r.
– f@makeRuleUnconditional (I, r) = (∅, {(c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1),
. . . ,not (cm : pm)})r for r of the form (1).

– f@applyMod (I,m) = mod I (m).
– f@applyModAtContext (I,m, c) = mod I (m)|c.
– f@guiSelectModAtContext (I,ms , c) = (A�, R�) where (A�, R�) is the user’s selec-
tion after being displayed a choice among all modifications in {(A�

1,
R�
1), . . .} = modset I (ms)|c.

– f@guiEditModAtContext (I,m, c) = (A�, R�), where (A�, R�) is the result of user
interaction with a modification editor that is preloaded with modification
mod I (m)c.

In practice, however, it is not necessary to implement action functions on the level
of rule modifications, since a policy in the comfort fragment can equivalently be
rewritten to the core fragment (which does not rely on rule modifications). Ex-
ample 10 already sketched a rewriting for @applyMod and @applyModAtContext .
For a complete rewriting from the comfort to the core fragment, we refer to the
extended version of this paper [15].

The effects of user-defined actions have to comply to Definition 4.

Effect Materialization. Once the effects of all actions in a selected policy
answer set have been determined, an overall modification is computed by the
componentwise union over all individual modifications. This overall modification
is then materialized in the MCS.

Given a MCSM and a policy answer set I (for a policy P and a corresponding
policy input EDBM ), let IM , respectively IR, denote the set of ground system
actions, respectively rule actions, in I . Then, Meff = {effI(α)|α ∈ IM} is the
set of effects of system action atoms in I , and Reff = {effI(α)|α ∈ IR} is
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the set of effects of rule actions in I . Furthermore, Rules = {r | (A,R)r ∈
Reff } is the set of bridge rules modified by Reff , and for every r ∈ Rules , let
Rr =

�

(A,R)r∈Reff
R, respectively Ar =

�

(A,R)r∈Reff
A, denote the union of rule

body removals, respectively additions, wrt. r in Reff .

Definition 5. Given a MCS M , and an impl policy P , let I be a policy answer
set of P for a policy input EDBM wrt. M . Then, the materialization of I in M
is the MCS M � obtained from M by replacing its set of bridge rules brM by the
set

(brM \R∪A) \Rules ∪M,

where R=
�

(A,R)∈Meff
R, A=

�

(A,R)∈Meff
A, and M= {(k:s) ← Body | r ∈

Rules, r ∈ brk, hb (r) = s, Body = B(r) \ Rr ∪ Ar}.

Note that, by definition, the addition of bridge rules has precedence over removal,
and the addition of body literals similarly has precedence over removal. There is
no particular reason for this choice; one just has to be aware of it when specifying
a policy. Apart from that, no order for evaluating individual actions is specified
or required.

Eventually, we can define modifications of a MCS that are accepted by a
corresponding impl policy.

Definition 6. Given a MCS M , an impl policy P , and a policy input EDBM

wrt. M , a modified MCS M � is an admissible modification of M wrt. P and
EDBM iffM � is the materialization of some policy answer set I ∈AS(P ∪EDBM ).

Example 11 (ctd). For brevity we here do not give a full account of a proper
EDBM2

of our running example. Intuitively EDBM2
represents all bridge rules,

minimal diagnoses and minimal explanations, in a similar fashion as already
shown in Ex. 6. We assume, that the two explanations and four diagnoses given
in Ex. 4 are identified by constants e1, e2, d1, . . . , d4, respectively.

Evaluating P2 ∪EDBM2
yields four policy answer sets, one is I1 = EDBM2

∪
{expl(e1), expl(e2), incNotLab(e2), incLab, in(d1), out(d2), out(d3), out(d4),
useOne, ruleHead(ralert , clab , alert), @addRule(ralert ), @applyModAtContext(d1,
clab)}. From I1 we obtain a single admissible modification of M2 wrt. P2: add
bridge rule ralert and remove r1.

Evaluating P3 ∪EDBM2
yields one policy answer set, which is I2 = EDBM2

∪
{modset(md , d1), modset(md , d2), modset(md , d3), modset(md , d4), @guiSelect -
Mod(md)}. Determining the effect of I2 involves user interaction; thus multiple
materializations of I2 exist. For instance, if the user chooses to ignore Sue’s al-
lergy and birth date (and probably imposes additional monitoring on Sue), then
we obtain an admissible modification of M : it adds the unconditional version of
r6 and removes r1. ��
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Fig. 2. Policy integration data flow and control flow block diagram.

4 Methodologies of Applying IMPL and Realization

Based on the simple system design shown in Fig. 2, we next briefly discuss
elementary methodologies of applying impl for the purpose of integrating MCS
reasoning with potential user interaction in case of inconsistency. Due to space
constraints, we restrict ourselves to an informal discussion.

We maintain a representation of the MCS together with a store of modifi-
cations. The semantics evaluation component performs reasoning tasks on the
MCS and invokes the inconsistency manager in case of an inconsistency. This
inconsistency manager uses the inconsistency analysis component4 to provide
input for the policy engine which computes policy answer sets of a given impl

policy wrt. the MCS and its inconsistency analysis result. This policy evalua-
tion step results in action executions potentially involving user interactions and
causes changes to the store of modifications, which are subsequently materi-
alized. Finally the inconsistency manager hands control back to the semantics
evaluation component. Principal modes of operation, and their merits, are the
following.

Reason and Manage once. This mode of operation evaluates the policy once,
if the effect materialization does not repair inconsistency in the MCS, no further
attempts are made and the MCS stays inconsistent. While simple, this mode
may not be satisfying in practice.

However, one can improve on the approach by extending actions with priority:
the result of a single policy evaluation step then may be a sequence of sets of
actions (of equal priority), corresponding to successive attempts (of increasing
priority) for repairing the MCS. This can be exploited for writing policies that
ensure repairs, by first attempting a ‘sophisticated’ repair possibly involving
user interaction, and — if this fails — to simply apply some diagnosis to ensure
consistency while the problem may be further investigated.

4 For realizations of this component we refer to [3,16].
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Reason and Manage iteratively. Another way to deal with failure to restore
consistency is to simply invoke policy evaluation again on the modified but
still inconsistent system. This is useful if user interaction may involve trial-and-
error, especially if multiple inconsistencies occur: some might be more difficult
to counteract than others.

Another positive aspect of iterative policy evaluation is, that it allows for
policies to be structured, e.g., as follows: (a) classify inconsistencies into au-
tomatically versus manually repairable; (b) apply actions to repair one of the
automatically repairable inconsistencies; (c) if such inconsistencies do not exist:
apply user interaction actions to repair one (or all) of the manually repairable
inconsistencies. Such policy structuring follows a divide-and-conquer approach,
trying to focus on individual sources of inconsistency and to disregard interac-
tions between inconsistencies as much as possible. If user interaction consists of
trial-and-error bugfixing, fewer components of the system are changed in each
iteration, and the user starts from a situation where only critical (i.e. not au-
tomatically repairable) inconsistencies are present in the MCS. Moreover, such
policies may be easier to write and maintain. On the other hand, termination of
iterative methodologies is not guaranteed. However, one can enforce termination
by limiting the number of iterations, possibly by extending impl with a control
action that configures this limit.

In iterative mode, passing information from one iteration to the next may
be useful. This can be accomplished by considering additional user-defined add
and delete actions which modify an iteration-persistent knowledge base, provided
to the policy as further input (by means of dedicated auxiliary predicates). For
more details we refer to [15].

5 Realizing IMPL in acthex

In this section, we demonstrate how impl can be realized using acthex. First
we give preliminaries about acthex which is a logic programming formalism that
extends hex programs with executable actions. We then show how to implement
the core impl fragment by rewriting it to acthex in Sect. 5.2. A rewriting from
the comfort to the core fragment of impl is given in the extended version of this
paper [15].

5.1 Preliminaries on acthex

The acthex formalism [2] generalizes hex programs [18] by adding dedicated
action atoms to heads of rules. An acthex program operates on an environment ;
this environment can influence external sources in acthex, and it can be modified
by the execution of actions.

Syntax. By C, X , G, and A we denote mutually disjoint sets whose elements
are called constant names, variable names, external predicate names, and action
predicate names, respectively. Elements from X (resp., C) are denoted with first
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letter in upper case (resp., lower case), while elements from G (resp., A) are
prefixed with “&” (resp. “#”). Names in C serve both as constant and predicate
names, and we assume that C contains a finite subset of consecutive integers
{0, . . . , nmax}.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a
tuple (Y0, Y1, . . . Yn), where Y0, Y1, . . . Yn are terms, and n ≥ 0 is the arity of the
atom. Intuitively, Y0 is the predicate name, and we thus also use the more familiar
notation Y0(Y1 . . . Yn). An atom is ordinary if Y0 is a constant. An external atom
is of the form &g[Y1, . . . , Yn](X1, . . . , Xm) with Y1, . . . , Yn and X1, . . . , Xm being
lists of terms. An action atom is of the form #g [Y1, . . . , Yn] {o, r} [w : l] where
#g is an action predicate name, Y1, . . . , Yn is a list of terms (called input list),
and each action predicate #g has fixed length in(#g) = n for its input list.
Attribute o ∈ {b, c, cp} is called the action option; depending on o the action
atom is called brave, cautious, and preferred cautious, respectively. Attributes
r, w, and l are called precedence, weight, and level of #g, denoted by prec(a),
weight(a), and level(a), respectively. They are optional and range over variables
and positive integers.

A rule r is of the form α1∨ . . .∨αk ← β1, . . . , βn, not βn+1, . . . , not βm, where
m, n, k ≥ 0, m ≥ n, α1, . . . , αk are atoms or action atoms, and β1, . . . βm are
atoms or external atoms. We define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪
B−(r), where B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. An acthex

program is a finite set P of rules.

Example 12 The acthex program {#robot[goto, charger ]{b, 1}←&sensor[bat]
(low); #robot[clean , kitchen]{c, 2}← night ; #robot[clean, bedroom ]{c, 2}← day ;
night ∨day←}uses action atom#robot to commanda robot, andan external atom
&sensor to obtain sensor information. Precedence 1 of action atom
#robot[goto, charger ]{b, 1} makes the robot recharge its battery before executing
cleaning actions, if necessary. ��

Semantics. Intuitively, an acthex program P is evaluated wrt. an external en-
vironment E using the following steps: (i) answer sets of P are determined wrt.
E, the set of best models is a subset of the answer sets determined by an ob-
jective function; (ii) one best model is selected, and one execution schedule S is
generated for that model (although a model may give rise to multiple execution
schedules); (iii) the effects of action atoms in S are applied to E in the order
defined by S, yielding an updated environment E�; and finally (iv) the process
may be iterated starting at (i), unless no actions were executed in (iii) which ter-
minates an iterative evaluation process. Formally the acthex semantics is defined
as follows.

Given an acthex program P , the Herbrand base HBP of P is the set of all
possible ground versions of atoms, external atoms, and action atoms occurring
in P obtained by replacing variables with constants from C. Given a rule r ∈ P ,
the grounding grnd(r) of r is defined accordingly, the grounding of program P
is given as the grounding of all its rules. Unless specified otherwise, C, X , G, and
A are implicitly given by P .
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An interpretation I relative to P is any subset I ⊆ HBP containing ordinary
atoms and action atoms. We say that I is a model of atom (or action atom)
a ∈ HBP , denoted by I |= a, iff a ∈ I . With every external predicate name
&g ∈ G, we associate an (n+m+2)-ary Boolean function f&g, assigning each
tuple (E, I, y1, . . . , yn, x1, . . ., xm) either 0 or 1, where n = in(&g),m = out(&g),
xi, yj ∈ C, I ⊆ HBP , and E is an environment. Note that this slightly generalizes
the external atom semantics such that they may take E into account, which was
left implicit in [2]. We say that an interpretation I relative to P is a model
of a ground external atom a = &g[y1, . . . , yn](x1, . . . , xm) wrt. environment E,
denoted as I, E |= a, iff f&g (E, Iy1 . . . , ynx1, . . . , xm) = 1. Let r be a ground
rule. We define (i) I, E |= H(r) iff there is some a ∈ H(r) such that I, E |= a,
(ii) I, E |= B(r) iff I, E |= a for all a ∈ B+(r) and I, E �|= a for all a ∈ B−(r),
moreover (iii) I, E |= r iff I, E |= H(r) or I, E �|= B(r). We say that I is a
model of P wrt. E, denoted by I, E |= P , iff I, E |= r for all r ∈ grnd(P ). The
FLP-reduct of P wrt. I and E, denoted as fP I,E , is the set of all r ∈ grnd(P )
such that I, E |= B(r). Eventually, I is an answer set of P wrt. E iff I is a
⊆-minimal model of fP I,E . We denote by AS(P,E) the collection of all answer
sets of P wrt. E.

The set of best models of P , denoted BM(P,E), contains those I ∈ AS(P,E)
that minimize the objective function HP (I) = Σa∈A (ω · level(a) + weight(a)),
where A ⊆ I is the set of action atoms in I , and ω is the first limit ordinal.
(This definition using ordinal numbers is equivalent to the definition of weak
constraint semantics in [8].)

An action a = #g[y1, . . . , yn]{o, r}[w : l] with option o and precedence r is
executable in I wrt. P and E iff (i) a is brave and a ∈ I , or (ii) a is cautious
and a ∈ B for every B ∈ AS(P,E), or a is preferred cautious and a ∈ B for
every B ∈ BM(P,E). An execution schedule of a best model I is a sequence of
all actions executable in I , such that for all action atoms a, b ∈ I , if prec(a) <
prec(b) then a has a lower index in the sequence than b. We denote by ESP,E(I)
the set of all execution schedules of a best model I wrt. acthex program P and
environment E; formally, let Ae be the set of action atoms that are executable in
I wrt. P and E, then ESP,E(I) =

�

[a1, . . . , an] | prec(ai) ≤ prec(aj), for all 1 ≤

i < j ≤ n, and {a1, . . . , an} = Ae

�

.

Example 13 In Example 12, if the robot has low battery, then AS(P,E) =
BM(P,E) contains models I1 = {night ,#robot[clean, kitchen]{c, 2},#robot
[goto, charger ]{b, 1}} and I2 = {day ,#robot[clean, bedroom ]{c, 2},#robot[goto,
charger ]b, 1}. We have ESP,E(I1) = {#robot[goto, charger ]{b, 1},#robot[clean,
bedroom ]c, 2}. ��

Given a model I , the effect of executing a ground action #g [y1, . . . , ym]
{o, p} [w : l] on an environment E wrt. I is defined for each action predicate
name #g by an associated (m+2)-ary function f#g which returns an updated
environment E� = f#g(E, I, y1, . . . , ym). Correspondingly, given an execution
schedule S = [a1, . . . , an] of a model I , the execution outcome of S in environ-
ment E wrt. I is defined as EX(S, I, E) = En, where E0 = E, and Ei+1 =
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f#g(Ei, I, y1, . . . , ym), given that ai is of the form #g[y1, . . . , ym]{o, p}[w : l].
Intuitively the initial environment E0 = E is updated by each action in S in
the given order. The set of possible execution outcomes of a program P on an
environment E is denoted as EX (P,E), and formally defined by EX (P,E) =
{EX(S, I, E) | S ∈ ESP,E(I) where I ∈ BM(P,E)}.

In practice, one usually wants to consider a single execution schedule. This
requires the following decisions during evaluation: (i) to select one best model
I ∈ BM(P,E), and (ii) to select one execution schedule S ∈ ESP,E(I). Finally,
one can then execute S and obtain the new environment E� = EX(S, I, E).

5.2 Rewriting IMPL to acthex

Using acthex for realizing impl is a natural and reasonable choice because acthex

already natively provides several features necessary for impl: external atoms
can be used to access information from a MCS, and acthex actions come with
weights for creating ordered execution schedules for actions occurring within the
same answer set of an acthex program. Based on this, impl can be implemented
by a rewriting to acthex, with acthex actions implementing impl actions, acthex

external predicates providing information about the MCS to the impl policy,
and acthex external predicates realizing the value invention builtin predicates.

We next describe a rewriting from the impl core language fragment to acthex.
We assume that the environment E contains a pair (A,R) of sets of bridge rules,
and an encoding of the MCS M (suitable for an implementation of the external
atoms introduced below, e.g., in the syntax used by the MCS-IE system [3],
which provide the corresponding policy input). A given impl policy P wrt. the
MCS M is then rewritten to an acthex program P act as follows.

1. Each core impl action @a(t) in the head of a rule of P is replaced by a brave
acthex action #a[t]{b, 2} with precedence 2. These acthex actions implement
semantics of the respective impl actions according to Def. 4: interpretation
I and the original action’s argument t are used as input, the effects are
accumulated as (A,R) in E.

2. Each impl builtin #idk(C, c1, . . . , ck) in P is replaced by an acthex external
atom &idk[c1, . . . , ck](C). The family of external atoms &idk[c1, . . . , ck](C)
realizes value invention and has as semantics function f&idk

(E, I,
c1, . . . , ck, C) = 1 for one constant C = auxc c1 . . . ck created from the
constants in tuple c1, . . . , ck.

3. We add to P act a set Pin of acthex rules containing (i) rules that use, for every
p ∈ Cres \ {modset}, a corresponding external atom to ‘import’ a faithful
representation ofM , and (ii) a preparatory action #reset with precedence 1,
and a final action #materialize with precedence 3: Pin = {p(t)← &p[](t) |
p ∈ Cres \ {modset}} ∪ {#reset[]{b, 1}; #materialize[]{b, 3}}, where t is a
vector of different variables of length equal to the arity of p (i.e., one, two,
or three).

The first two steps transform impl actions into acthex actions, and #idk-
value invention into external atom calls. The third step essentially creates policy
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input facts from acthex external sources. External atoms in Pin return a repre-
sentation of M and analyze inconsistency in M , providing minimal diagnoses
and minimal explanations. Thus, the respective rules in Pin yield an extension
of the corresponding reserved predicates which is a faithful representation of M .
Moreover, action #reset resets the modification (A,R) stored in E to (∅, ∅).5

Action #materialize materializes the modification (A,R) (as accumulated by
actions of precedence 2) in the MCS M (which is part of E).

Example 14 (ctd). Policy P3 from Ex. 9 translated to acthex contains the follow-
ing rules P act

3 =Pin ∪
�

modset(md , X)← diag(X); #guiSelectMod[md ]{b, 2}
�

.
��

Note, that actions in the rewriting have no weights, therefore all answer sets
are best models. For obtaining an admissible modification, any policy answer set
can be chosen, and any execution schedule can be used.

Proposition 1. Given a MCS M , a core impl policy P , and a policy input
EDBM wrt. M , let P act be as above, and consider an environment E containing
M and (∅, ∅). Then, every execution outcome E� ∈ EX (P act ∪ EDBM |BA

, E)
contains instead of M an admissible modification M � of M wrt. P and EDBM .

The proof of this correctness result can be found in the extended version [15].

6 Conclusion

Related to impl is the action language IMPACT [26], which is a declarative for-
malism for actions in distributed and heterogeneous multi-agent systems. IM-
PACT is a very rich general purpose formalism, which however is more difficult
to manage compared to the special purpose language impl. Furthermore, user
interaction as in impl is not directly supported in IMPACT; nevertheless most
parts of impl could be embedded in IMPACT.

In the fields of access control, e.g., surveyed in [4], and privacy restric-
tions [13], policy languages have also been studied in detail. As a notable ex-
ample, PDL [12] is a declarative policy language based on logic programming
which maps events in a system to actions. PDL is richer than impl concerning
action interdependencies, whereas actions in impl have a richer internal struc-
ture than PDL actions. Moreover, actions in impl depend on the content of a
policy answer set. Similarly, inconsistency analysis input in impl has a deeper
structure than events in PDL.

In the context of relational databases, logic programs have been used for
specifying repairs for databases that are inconsistent wrt. a set of integrity con-
straints [14,23,24]. These approaches may be considered fixed policies without
user interaction, like an impl policy simply applying diagnoses in a homogeneous
MCS. Note however, that an important motivation for developing impl is the

5 This reset is necessary if a policy is applied repeatedly.
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fact that automatic repair approaches are not always a viable option for dealing
with inconsistency in a MCS.

Active integrity constraints (AICs) [9–11] and inconsistency management
policies (IMPs) [25] have been proposed for specifying repair strategies for in-
consistent databases in a more flexible way. AICs extend integrity constraints by
introducing update actions, for inserting and deleting tuples, to be performed if
the constraint is not satisfied. On the other hand, an IMP is a function which
is defined wrt. a set of functional dependencies mapping a given relation R to a
‘modified’ relation R� obeying some basic axioms.

Although suitable impl policy encodings can mimic database repair
programs—AICs and (certain) IMPs—for specific classes of integrity constraints,
there are fundamental conceptual differences between impl and the above ap-
proaches to database repair. Most notably, impl policies aim at restoring consis-
tency by modifying bridge rules leaving the knowledge bases unchanged rather
than considering a set of constraints as fixed and repairing the database. Ad-
ditionally, impl policies operate on heterogeneous knowledge bases and may
involve user interaction.

Ongoing and Future Work. Regarding an actual prototype implementation
of impl, we are currently working on improvements of acthex which are neces-
sary for realizing impl using the rewriting technique described in Sect. 5.2. In
particular, this includes the generalization of taking into account the environ-
ment in external atom evaluation. Other improvements concern the support for
implementing model and execution schedule selection functions.

An important feature of impl is the user interface for selecting or editing
modifications. There the number of displayed modifications might be reduced
considerably by grouping modifications according to nonground bridge rules.
This would lead to a considerable improvement of usability in practice.

Also, we currently just consider bridge rule modifications for system repairs,
therefore an interesting issue for further research is to drop this convention.
A promising way to proceed in this direction is to integrate impl with recent
work on managed MCSs [6], where bridge rules are extended such that they
can arbitrarily modify the knowledge base of a context and even its semantics.
Accordingly, impl could be extended with the possibility of using management
operations on contexts in system modifications.
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