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Abstract

We study the problem of finding optimal plans for multiple teams of robots through a mediator,
where each team is given a task to complete in its workspace on its own and where teams are
allowed to transfer robots between each other, subject to the following constraints: 1) teams (and
the mediator) do not know about each other’s workspace or tasks (e.g., for privacy purposes); 2)
every team can lend or borrow robots, but not both (e.g., transportation/calibration of robots
between/for different workspaces is usually costly). We present a mathematical definition of this
problem and analyze its computational complexity. We introduce a novel, logic-based method to
solve this problem, utilizing action languages and answer set programming for representation,
and the state-of-the-art ASP solvers for reasoning. We show the applicability and usefulness of
our approach by experiments on various scenarios of responsive and energy-efficient cognitive
factories.
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1 Introduction

As conventional manufacturing and assembly systems fall short of responding to constantly

rising market demands for customized and variant-rich products in a cost effective manner

within short delivery times, new approaches for automated fabrication of customized prod-

ucts become crucial for enhancing productivity, ensuring competitiveness and economic

sustainability in the manufacturing sector. Along these lines, reconfigurable and flexible

manufacturing systems have been deployed over the last decade. Cognitive factories (Beetz

et al. 2007; Zaeh et al. 2009; Zaeh et al. 2012) are a further step in this direction aimed

towards highly flexible and typically small to medium size manufacturing plants that

can produce a very large variety of customized products even in low quantities. Rapidly

responding to changing customer needs and customization requests, cognitive factories

can demonstrate the flexibility of human workshops, while maintaining cost-effectiveness

of mass production systems.

Cognitive factories endow manufacturing system with high-level reasoning capabilities

in the style of cognitive robotics, such that these systems become capable of planning their
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own actions. By utilizing sophisticated planning and decision-making algorithms, cognitive

factories can efficiently allocate their resources for daily/weekly/monthly work load and

ensure production of variant-rich products to guarantee pressing delivery deadlines.

One of the key challenges in cognitive factories is the coordination between multiple

teams of robots to achieve overall shortest delivery time for a given manufacturing order.

Minimizing the delivery lead time for a customized order not only leads to a more cost-

effective process by reducing contribution of factory overhead per order, but also preserves

energy resources and decreases negative environmental impacts by efficient use of facility

infrastructure, such as HVAC (heating, ventilation, and air conditioning) and lighting.

With this motivation, we consider multiple teams of robots, where each team is given a

feasible task to complete in its workspace on its own, and where teams are allowed to

transfer robots between each other. The goal is to find an optimal overall plan for all

teams so that all tasks can be completed as soon as possible, subject to the following

constraints:

C1 Teams do not know about each other’s workspace or tasks (e.g., for the purpose of

privacy in micro manufacturing plants that specialize on prototyping pre-release

products).

C2 Lending/borrowing robots between workspaces back and forth is not desired (e.g.,

transportation of robots is usually costly, also, since tasks may be different in

workspaces, robots need some tuning); for that purpose, a team can either lend or

borrow robots.

Note that a lender can lend robots to more than one team; and a borrower can borrow

robots from more than one team. Note also that each team may have robots that cannot

be transferred; the above problem considers transferrable robots only and assumes that

capabilities of transferrable robots are indifferent.

We introduce a novel method to find an optimal global plan for all teams, with at most

k steps, subject to constraints C1 and C2, and the presence of a mediator who does not

belong to any team and who does not know anything about teams’ workspaces, tasks and

goals. Our method consists of two phases: finding a coordination of the teams and then

an optimal global plan.

In the first phase, for a nonnegative integer l≤ k denoting the length of a global plan:

1) The mediator asks yes/no questions to every team (in any order), to identify whether a

team can complete its task in l steps, while lending/borrowing how many robots to/from

other teams and when. 2) Once answers to these questions are collected, the mediator

tries to find a coordination of the teams (i.e., which team should lend how many robots to

which other team, and when), subject to the constraints C1 and C2 above. The optimal

value for l can be found by a linear search between 1 and k.

In the second phase, after some coordination of teams is found for an optimal value of

l, the mediator informs each team how many robots it is expected to lend to (or borrow

from) which other team and when. Taking this information into account, each team

computes an optimal local plan (whose length is less than or equal to l) to complete its

task. An optimal global plan for all teams is the union of all optimal local plans.

Note that the mediator cannot find a global plan on its own since it does not know

about teams’ workspace, tasks, plans, actions, goals, etc.. In fact, a centralized approach

to compute a global plan is in most cases not scalable due to large domain description
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that formalizes all workspaces and teams. Also note that teams do not communicate with

each other. Otherwise, the number of queries (and the number of rounds of exchanging

messages) would increase substantially, leading to a more time-consuming process to find

an optimal global plan.

Both phases involve solving computational problems that are intractable, since finding

plans of length l possibly with temporal constraints is NP-complete (Turner 2002), and

answering each query in the first phase is a planning problem with temporal constraints,

and thus NP-complete (Turner 2002). We prove that finding a coordination of the teams

for a global plan with at most l steps is also NP-complete (see Proposition 1 in Section 3).

In the first phase, each team answers queries that are relevant to its workspace, task, goals

only, and independently of other teams; therefore, queries can be answered in parallel.

In the second phase, each team computes an optimal local plan on its own; therefore,

optimal local plans can be computed in parallel as well.

We propose to solve the planning problems with temporal constraints (and thus

answering queries posed by the mediator), and the coordination problem using answer

set programming (ASP) (Marek and Truszczyński 1999; Niemelä 1999; Lifschitz 2002;

Lifschitz 2008; Brewka et al. 2011). To solve planning problems, first we represent action

domains (i.e., workspaces) and planning problems (i.e., queries) in the input language

of CCalc (McCain and Turner 1997), which allows representation of dynamic domains

in a subset of the expressive action description language C+ (Giunchiglia et al. 2004),

and allows teams to solve planning problems with temporal constraints in a variation

of the action query language Q (Gelfond and Lifschitz 1998). Then CCalc’s input is

transformed into ASP using the tool cplus2asp (Casolary and Lee 2011). After that, we

can use state-of-the-art ASP solvers, like Clasp (Gebser et al. 2007), to compute plans.

To solve the coordination problem using ASP solvers, we formulate the coordination

problem in the representation language of ASP.

We show the usefulness and applicability of our approach by experiments on various

scenarios of responsive energy-efficient cognitive factories.

2 Automating Reasoning for a Team of Robots

Our goal is to find an optimal global plan with at most k steps, where at most m robots

can be transferred between teams. To find a coordination of teams for an optimal global

plan, the mediator asks yes/no questions of the following three forms to every team (in

any order), for every l≤ k, l≤ l and m≤m:

Q1 Can you complete your task in l steps?

Q2 Can you complete your task in l steps, if you lend m robots before step l?

Q3 Can you complete your task in l steps, if you borrow m robots after step l?

Once such a coordination is found from the answers of these queries, the mediator

informs each team how many robots it is expected to lend to (or borrow from) which

other team and when. Then each team computes an optimal local plan to complete its

own task, taking into account the relevant information of transfer of robots from/to it.

Therefore, each team of robots performs two kinds of reasoning tasks: answering queries

of form Q1, Q2 and Q3, and finding optimal plans with complex goals to complete its

tasks. Although optimal plans can be found by some existing classical planners, queries
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mentioned above cannot be answered by them directly. Also in many application scenarios

for cognitive factories, actions of robots are concurrent (e.g., several robots working on

different parts of an order at the same time) and there are ramifications and/or delayed

effects of actions (e.g., after painting, a box gets dried after a while).

Due to the representation challenges mentioned above (about concurrent actions,

ramifications, etc.), we represent workspaces (as action domains) and queries (as planning

problems) in the input language of CCalc (McCain and Turner 1997), which allows

representation of dynamic domains in a subset of the expressive action description language

C+ (Giunchiglia et al. 2004), and allows teams to answer various sorts of queries in an

elaboration tolerant way (without having to modify the domain description) in a variation

of the action query language Q (Gelfond and Lifschitz 1998). Also that the language C+
has been used in various sophisticated real-world robotic applications (Erdem and Patoglu

2012), where discrete high-level reasoning is integrated tightly with continuous geometric

reasoning and low-level controls (Erdem et al. 2011; Aker et al. 2012; Havur et al. 2013),

is advantageous for multi-robot cognitive factory applications that have motivated our

studies in this paper. We refer the reader to (Giunchiglia et al. 2004) for the syntax and

semantics of C+, and some examples.

In the action query language of CCalc, an atomic query is one of the two forms,

F holds at t or A occurs at t, where F is a fluent formula, A is an action formula, and

t is a time step. A query is a propositional combination of atomic queries.

Suppose that F and G are fluent formulas denoting an initial state and goal conditions

respectively. We can express the question “can you complete the task specified by the

initial state F and the goal conditions G in k steps?”, with a query of the form

F holds at 0 ∧G holds at k.

Note that this query describes the problem of finding a plan of length k.

Suppose that the action formula giveRobot(w) describes that the team lends the robot w.

We can express the question “can you complete your task specified by the initial state F

and the goal conditions G in k steps, while also lending m robots before step k′?”, with

a query of the form

F holds at 0 ∧G holds at k ∧ ∃T,W1, . . . ,Wm :

T <k′ ∧W1<W2< . . . <Wm ∧
∧m
i=1 giveRobot(Wi) occurs at T.

Given an action description and a query in the input language of CCalc, we can

use either state-of-the-art parallel SAT solvers (like manysat (Hamadi et al. 2009)) or

state-of-the-art ASP solvers (like Clasp (Gebser et al. 2007)) to find an answer the

query. After some experimental evaluations comparing these two approaches (summarized

in Appendix A), we have decided to use the ASP solver Clasp (with the grounder

Gringo (Gebser et al. 2011)) to find answers to queries and planning problems. CCalc’s

input can be transformed into an ASP program in the input language of Clasp, using

the tool cplus2asp (Casolary and Lee 2011). If Clasp finds an answer set (Gelfond and

Lifschitz 1998) for the ASP program then the query is answered affirmatively; otherwise,

the query is answered negatively.

Note that since each team answers queries that are relevant to its workspace, task,

goals only, and independently of other teams, queries can be answered by the teams in

parallel.
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3 Coordination of Teams

From teams’ answers to yes/no questions (of the forms Q1–Q3) posed by the mediator,

the following can be inferred:

• If there is a team that answers “no” to every question, then there is no overall plan

of length l where every team completes its own tasks.

• Otherwise, we can identify a set Lenders of lender teams and a set Borrowers of

borrower teams (Lenders,Borrowers ⊂ Teams): If a team answers “no” to question

Q1, and “yes” to question Q3 for some l and m, then it is a borrower. If a team

answers “yes” to question Q1 and answers “yes” to question Q2 for some l and m,

then it is a lender. Otherwise, it is neither a lender nor a borrower.

• For every lender (resp., borrower) team, from its answers to queries Q2 (resp., Q3),

we can identify the earliest (resp., latest) time it can lend (resp., borrow) robots, in

order to complete its tasks in l steps.

For every l≤ k, these inferences can be used to decide whether lenders and borrowers

can collaborate with each other, so that every team completes its task in l steps.

To precisely define this problem, let us introduce some notation. For every lender

team i∈Lenders, positive integer m≤m and nonnegative integer l≤ l, we denote by

atoms of the form lend(i,m, l) that the lender team i can lend m robots before time

step l. Similarly, for every borrower team i∈Borrowers, we denote by atoms of the form

borrow(i,m, l) that the borrower team i needs m robots before time step l.

To identify the earliest lend times and latest borrow times, we introduce a collection of

partial functions for lenders and borrowers:

Lend earliestm : Lenders 7→ {0, . . . , l}
Borrow latestm : Borrowers 7→ {0, . . . , l}

where Lend earliestm returns the earliest step that a lender can lend m robots and

Borrow latestm returns the latest step that a borrower needs to borrow m robots:

Lend earliestm(i) = arg minl{lend(i,m, l) = 1}
Borrow latestm(j) = arg maxl{borrow(j,m, l) = 1}.

Usually transferring robots from one team to another team takes some time, not only

due to transportation but also due to calibration of the robots for a different workspace.

Such a delay time is defined by a function:

Delay : Lenders × Borrowers 7→ {0, . . . , l}.

Now we can define when a set of lender teams can collaborate with a set of borrower

teams:

Definition 1 A ml-collaboration between Lenders and Borrowers with at most m robot

transfers and within at most l steps, relative to Delay, is a partial function

f : Lenders × Borrowers → {0, . . . , l} × {0, . . . ,m}

(where f(i, j) = (l, u) denotes that team i lends u robots to team j at time step l) such

that the following hold:
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Fig. 1. A summary of teams’ answers to queries.

(a) For every borrower team j ∈Borrowers, there are some lender teams i1, . . . , is ∈Lenders

where

• f(i1, j) = (l1, u1), . . . , f(is, j) = (ls, us) for some time steps l1, . . . , ls≤ l and some

positive integers u1, . . . , us≤m, and

• Delay(i1, j) = t1, . . . ,Delay(is, j) = ts for some time steps t1, . . . , ts≤ l;

and there is a positive integer m≤m such that

max{l1+t1, . . . , ls+ts}≤Borrow latestm(j)

m≤ ∑s
k=1 uk.

(b) For every lender team i∈Lenders, there are some borrower teams j1, . . . , js ∈Borrowers

such that f(i, j1) = (l1, u1), . . . , f(i, js) = (ls, us) for some time steps l1, . . . , ls≤ l and

some positive integers u1, . . . , us≤m, and there is a positive integer m≤m such that

Lend earliestm(i)≤ min{l1, . . . , ls}
m≥ ∑s

k=1 uk.

Condition (a) ensures that a borrower team does not borrow fewer robots than it needs.

Condition (b) ensures that a lender team does not lend more robots than it can. These

two conditions entail the existence of a lender team that can lend robots when a borrower

team needs them.

Example 1 Consider four teams of robots, where Teams 1 and 2 are lenders and Teams

3 and 4 are borrowers. Take l= 8 and m= 4. The lenders’ answers to questions of the

form Q2 (“Can you complete your task in l steps, if you lend m robots before step l?”)

and the borrowers’ answers to questions of the form Q3 (“Can you complete your task in l

steps, if you borrow m robots after step l?”) are summarized in Figure 1. The affirmative

(resp., negative) answers to questions for time step l are denoted by green/solid (resp.,

red/hatched); the number m of robots that can be lent or needs to be borrowed are denoted

above the rows. According to these answers, Team 1 can lend 2 robots after step 3 or 4

robots after step 7, Team 2 can lend 1 robot after step 2, Team 3 needs to borrow 1 robot

before step 5 or 3 robots before step 7, and Team 4 needs to borrow 2 robots before step 6.
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Suppose the delay time is Delay(i, j) = |i− j|. We can show that a ml-collaboration f

exists: f(1, 3) = (3, 1), f(1, 4) = (3, 1), f(2, 4) = (2, 1). Indeed, f satisfies the conditions

stated in Def. 1. Condition (a): for Team 3, f(1, 3) = (3, 1), and there exists m= 1≤ 1

s.t. Borrow latest1(3) = 5≥ 3 + 2. So Team 3 can finish its task in 8 steps if it borrows

1 robot before step 5. Similarly, for Team 4, f(1, 4) = (3, 1) and f(2, 4) = (2, 1), and

there exists m= 2≤ 1 + 1 such that Borrow latest2(4) = 6≥ max{3 + 3, 2 + 2}. Condition

(b): for Team 1, f(1, 3) = (3, 1) and f(1, 4) = (3, 1), and there exists m= 2≥ 1 + 1 s.t.

Lend earliest2(1) = 3≤ 3. Similarly, for Team 2, f(2, 4) = (2, 1), and there exists m= 1≥ 1

such that Lend earliest1(2) = 2≤ 2.

Now we are ready to precisely describe the computational problem of finding a coordination

of multiple teams of robots, to complete all the tasks as soon as possible in at most l

steps where at most m robots can be relocated:

FindCollaboration

Input: For a set Lenders of lender teams, a set Borrowers of borrower teams,

positive integers l and m: a delay function Delay and a collection of functions

Lend earliestm and Borrow latestm for every positive integer m (m≤m).

Output: A ml-collaboration between Lenders and Borrowers with at most m robot

transfers and within at most l steps, relative to Delay .

As expected, this problem is intractable:

Proposition 1 The decision version of FindCollaboration (i.e., existence of a ml-

collaboration) is NP-complete.

Intuitively the membership proof is established by guessing and checking f in polynomial

time. The hardness proof relies on a polynomial-time reduction from a 3SAT instance F

with a atoms and b clauses, to a FindCollaboration problem instance with a lender

teams and b borrower teams with l= 2a and m defined over the number of occurrences of

literals in F , and with no delays. Basically, we associate each atom with two time steps

(denoting true resp. false); for each clause we define a borrower that can complete its

work in 2a steps if it can borrow enough robots for at least one time step corresponding

to a literal in the clause. We create lenders that can give the required numbers of robots

either early (atom is true) or late (atom is false). We configure the number of robots

associated with each literal such that a borrower’s requirements can only be satisfied by

the correct literals. The detailed proof is contained in Appendix B.

4 Finding a Coordination of Teams in ASP

Deciding whether a program in ASP has an answer set is NP-complete (Dantsin et al.

2001); therefore, ASP is suitable for solving FindCollaboration problem. We formalize

FindCollaboration in ASP as follows.

The input is represented by a set of facts, using atoms of the forms delay(i, j, l),

lend earliest(i,m, l), and borrow latest(j,m, l) where i∈Lenders , j ∈Borrowers , m≤m,

l≤ l.
To formalize conditions (a) and (b) of Def. 1, we introduce atoms of the forms
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condition borrower(j) and condition lender(i). Condition (a) is defined as follows:

condition borrower(j)← sum〈{u : f(i, j, l2, u), i∈Lenders, l2≤ l}〉≥m,
max 〈{l1+t : f(i, j, l1, u), delay(i, j, t), i∈Lenders, u≤m}〉≤ l,
borrow latest(j,m, l).

where j ∈Borrowers, l≤ l,m≤m. The second line of the rule above computes the num-

ber m of robots lent to the borrower team j; the third line computes the latest time step

l that team j borrows a robot; and the last line describes that team j needs m robots by

step l. Similarly, we define condition (b).

Next, we introduce atoms of the form f(i, j, l, u) (describing f(i, j) = (l, u)). We define

an ml-collaboration f , by first “generating” partial functions f :

{f(i, j, l, u) : l≤ l, u≤m}1← (i∈Lenders, j ∈Borrowers)

and then “eliminating” the ones that do not satisfy conditions (a) and (b) of Def. 1:

←not condition borrower(j) (j ∈Borrowers),

←not condition lender(i) (i∈Lenders).

With the ASP formulation of FindCollaboration above, an ASP solver can find an

ml-collaboration.

5 Finding an Optimal Plan for Multiple Teams

Once a coordination of teams is found using an ASP solver for an optimal global plan

with l≤ k steps, the mediator informs each team how many robots it is expected to

lend/borrow to/from which team and when, along with the optimal plan length l. Taking

this information into account, each team computes an optimal local plan with at most l

steps using an ASP solver, to complete its task, as described in Section 2. The union of

these optimal local plans gives us an optimal global plan.

In a naive approach, every team answers O
(
m·k2

)
queries, within this overall algorithm.

We can improve it by applying binary search between 1 and l to find the earliest lend

times and the latest borrow times, and between 1 and k to find the optimal value for l.

With this improvement, every team answers O
(
m·log(k)2

)
queries.

On the other hand, the computation time to answer a query drastically increases as

the plan length increases (due to inherent hardness of planning (Turner 2002; Erol et al.

1995)). In such cases, as suggested by Trejo et al. (Trejo et al. 2001), it is not a good idea

to apply binary search to find the optimal value l for a global plan. Therefore, a better

approach might be to use linear search to find the optimal value l for a global plan, and

binary search to find optimal values for lending/borrowing times. This approach leads to

more number of queries (i.e., every team answers O
(
m·k·log(k)

)
queries) but less amount

of computation times as verified by experiments (Table A 2 in Appendix A).

Note that since each team computes an optimal local plan on its own, optimal local

plans can be computed in parallel as well.

6 Experimental Evaluation

We investigated the scalability and usefulness of the proposed planning approach (e.g., in

terms of quality of solutions) by means of some experiments.
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Table 1. Experimental results for six scenarios

Sc
en

ar
io

Tea
m

s

W
or

ks
pa

ce
(g

rid
ce

lls
)

W
or

ke
r
R
ob

ot
s

Tot
al

R
ob

ot
s

O
rd

er
(b

ox
es

)

Q
ue

st
io
ns

(t
ot

al
)

A
ns

w
er

in
g

Q
ue

st
io
ns

(a
ve

ra
ge

tim
e)

Fin
di

ng
C
ol
la
bo

ra
tio

n

(a
ve

ra
ge

tim
e)

O
pt

im
al

G
lo
ba

l Pla
n

(w
ith

co
lla

bo
ra

tio
n)

O
pt

im
al

G
lo
ba

l Pla
n

(w
ith

ou
t
co

lla
bo

ra
tio

n)

# # # # # # sec sec length length

1 2 15 1,2 5 6 212 3.96 < 0.1 30 34
2 3 15 1,2,3 9 9 437 3.92 < 0.1 25 34
3 4 15 1,2,3,4 15 12 525 1.82 < 0.1 21 34

4 2 24 2,4 8 8 127 4.76 < 0.1 20 29
5 3 24 2,4,6 18 12 171 5.37 < 0.1 18 29
6 4 24 2,4,6,8 30 16 293 79.96 < 0.1 18 29

We performed some experiments in a variation of the Painting Factory domain described

in (Erdem et al. 2012). In this domain, a set of boxes must be manufactured within a

given time. To manufacture a box it has to undergo various stages of painting, waxing,

and stamping, obeying certain time constraints. There are two types of robots: worker

robots operate on boxes, they can configure themselves for different stages of process, and

they can be exchanged between teams; charger robots maintain the batteries of workers

and monitor team’s plan, and cannot be exchanged between teams. We assembled teams

of different sizes in this domain, so that exchanging worker robots between teams can

reduce the time that is necessary to produce the requested amount of boxes.

For our experimental scenarios (see Table 1), we considered team workspaces of 5×3 = 15

(resp., 8×3 = 24) grid cells. We varied the number of teams, the number of robots in

each team, and the number of boxes that must be manufactured by each team. In each

team, for every two worker robots, there is one charger robot. As an example we discuss

Scenario 5: three teams must manufacture 12 boxes. Each has a 8×3 = 24 workspace. The

teams consist of 2, 4, resp., 6 worker robots. Accordingly, the teams have 1, 2, resp., 3

charger robots; this yields a total of 18 robots in Scenario 5. The sizes of the workspaces

in these instances are reasonable considering real manufacturing processes, since every

work cell in a real factory typically is of modest size with 3–12 operators (in our case

2–9 robots per workspace). The number of work cells in a factory ranges drastically from

micro factories to large manufacturing plants; with the utilization of parallelization to

answer queries, the number of workspaces can be increased further.

We performed experiments on a Linux server with 32 Intel R© E5-2665 CPU cores with

2.4GHz and 64GB memory (note that our experiments never use more than 300MB).

The overall algorithm described in Section 5 is implemented in python. The ASP solver

Clasp version 2.1.3 (with Gringo version 3.0.5) is used for answering queries (Section 2)

and to solve the collaboration problem (Section 4).

Table 1 shows the results for six scenarios of varying size, averaged over three runs.

For each scenario, we report the total number of questions answered by the teams, the

average CPU time to answer a query and to find a coordination of teams, the length of

an optimal global plan with/without collaborations of teams. For instance, for Scenario 5,
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a total of 171 queries are answered by the teams; average time to answer a query is 5.37

seconds; and finding a coordination of teams takes less than a second. An optimal global

plan with such a coordination has 18 steps; whereas an optimal global plan without any

collaborations has 29 steps.

We can observe from the table that finding a coordination function by the mediator

takes a negligible amount of time. The majority of the total computation time is spent for

the teams to answer questions. As the problem size increases, the size of the ASP program

gets larger, making it hard for Clasp to find an answer. Since teams’ query answering

can be parallelized, scalability of the approach to factories with many workspaces seems

plausible.

We can also observe the tradeoff between the optimal global plan length and the total

computation time, with and without team collaborations. For instance, for Scenario 2, if

we allow collaborations of teams, then we can find an optimal global plan of length 25, in

about 33 minutes; otherwise, we can find an optimal global plan of length 34 in about

5 minutes. This computational cost is negligible compared to 27% decrease in process

length resulting in large cost savings for the manufacturing industry; time gains achieved

by such a decrease in process length will help economic sustainability under low quantity

orders, and result also in better customer satisfaction.

7 Related Work

The most related work to ours is on decoupling plans of multiple agents to coordinate

their actions (M. M. de Weerdt 2009), and can be summarized in three parts:

Coordination before planning: These methods coordinate the agents before they even

begin to plan. Some of them introduce social laws the agents must follow (Shoham and

Tennenholtz 1995; ter Mors et al. 2004). These laws restrict the actions of agents and can

be used to reduce planning and coordination time (e.g., if everyone drives on the right

side of the road, no coordination with oncoming cars is required).

Coordination during planning: In these methods, agents find plans for themselves while

sharing information about them, and adapt their plans accordingly to avoid conflicts.

Partial Global Planning (PGP) framework (Durfee and Lesser 1987) and its extension,

Generalized PGP (Decker and Lesser 1994), are examples of these sorts of methods.

In these approaches, agents share their plans using a specialized plan representation.

Coordination is achieved as follows: if an agent informs a second agent of its own plan,

the second agent merges this information into its own partial global plan. The second

agent then tries to improve the global plan. If it can, the improved plan is shown to

the other agents who can accept/reject/modify it. Another example of this approach is

the Plan Merging Paradigm (Alami et al. 1998), where each robot incrementally builds

and executes its own plan taking into account the multi-robot context. There are also

coordination methods where the agents exchange subgoals with auctions (van der Krogt

et al. 2005).

Coordination after planning: These methods use plan merging. Given the individual plans

of all agents, plan merging constructs a joint plan for all agents. Georgeff (Georgeff 1988)

proposes a plan-synchronization process starting with individual plans. Stuart (Stuart
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1985) uses propositional temporal logic to guarantee that only feasible states of the envi-

ronment can be reached. Introducing restrictions on individual plans (as in coordination

before planning) can be used to ensure efficient merging (Yang et al. 1992; Foulser et al.

1992). Another approach to merging plans is to use A∗ search with a smart cost-based

heuristic (Ephrati and Rosenschein 1993). There are also task allocation methods that

assign the roles of agents for the execution of a given plan (Hunsberger and Grosz 2000).

Our method is different from these related work in the following ways: 1) In our

approach, the teams do not communicate with each other, but with a mediator. 2) The

communication is not done by passing information about plans or durations of actions:

the teams answer the mediator’s yes/no questions, ensuring that the teams do not have

to share private information (e.g., workspace, tasks, goals) with the mediator; once a

coordination is found, then the mediator informs each team about how many robots

it should lend/borrow and when, so the teams do not know about which other teams

lend/borrow robots. 3) Like the related work, each team computes its own an optimal

local plan to complete its task taking into account some extra information; but this extra

information is not about other teams (e.g., their plans, actions, tasks). 4) Our goal is

not to find any coordination of teams that would allow decoupling of their local plans,

but to find a coordination of teams for an optimal global plan. 5) Such a coordination is

found iteratively where each iteration involves individual teams’ solving various planning

problems with complex goals to answer mediator’s questions; so determining a feasible

coordination goes hand-in-hand with planning. 6) Our method assumes that a team

cannot be both a lender or borrower, to ensure a small number of costly transfers of

robots between teams; on the other hand, we do not assume that all teams are in the

same workspace. Note that once a coordination of teams is found, then an optimal global

plan is computed by combining the local plans (as in related work where coordination is

done before/after planning).

Our work is more about team work to find a (optimal) global plan, like the related

work discussed above, where teams are determined in advance (and in our case costly

transfers of robots are not desired), rather than team formation (to decide how or when

to join teams) (Gaston and desJardins 2008; Nair et al. 2002).

Our work is also different from the existing approaches on resource allocation in a

multi-agent time-constrained domain (Sycara et al. 1991; Chevaleyre et al. 2006; Lin

2011) due to the second item above, because in our method no information is required

about plans, ordering constraints on actions, or causal links.

It is important to note here that, the mediator in our approach is a neutral coordinator

like in (Ehtamo et al. 1999), though it does not negotiate with the teams but simply

gathers information to achieve a optimal global solution. The mediator does not know

anything about the teams’s goals, tasks or workspaces, and the teams do not know what

the mediator is trying to optimize.

Distributed planning for multiple agents with the help of a supervisor, has been studied

using action languages (Dovier et al. 2013) and logic programming (Kowalski and Sadri

2013) as well. There are essential differences between these works and the proposed

approach: differences in the expressivity of the languages (e.g., the action language in

(Dovier et al. 2013) does not allow representation of ramifications, but on the other hand

it includes formulas to represent communication messages); the role of the supervisor (in

both of the related works, the role of the supervisor is to resolve conflicts; in our work, it
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is to decide for efficient use of resources); communication of teams and supervisor (in the

related approaches, agents can communicate and negotiate between each other, and the

supervisor collects teams’ to-be-executed actions to check for conflicts); workspaces (we

assume that workspaces are not shared).

8 Discussion

We have introduced a novel method to find an optimal global plan for multiple teams of

robots, by means of determining a coordination of teams based on their answers to yes/no

questions that do not convey private information about their workspace, tasks, robots,

plans, actions, goals, etc.. We have defined the problem of determining a coordination,

and proved its intractability. Using the state-of-the-art ASP solvers, we have evaluated

the usefulness of our approach in a cognitive factory setting, and observed a promising

decrease in the total process time, which is important for larger cost savings and better

customer satisfaction towards economic sustainability.

Lessons learnt The generic nature of this method allows other reasoners and solvers to be

used for planning, query answering, or coordination finding. We have used CCalc; because

1) workspaces we consider in a cognitive factory involve concurrency and ramifications

(which can be easily formalized in the input language of CCalc), and require external

computations in continuous space of robots’ configurations (e.g., to check collisions) as

in (Erdem et al. 2011; Aker et al. 2012; Havur et al. 2013); and 2) planning problems and

queries we consider involve complex goals and conditions. Also, CCalc can be used with

a wide range of reasoners, like SAT solvers and ASP solvers.

We have used ASP for finding a coordination of teams, since it provides a concise

provably correct description of the problem and the computation times with the state-of-

the-art ASP solvers are quite good.

The fact that in our approach each team performs its own computations about com-

pleting its own task leads to a highly modular structure of computation and allows

computation of local plans and answering queries in parallel.

In addition to the strengths of using these logic-based formalisms from the point of

view of representation and efficient reasoning, it is also important that these formalisms

are actually being used for challenging robotic applications; making it easier to apply our

approach to robotic domains, like in cognitive factories (Erdem et al. 2012).

Future work Our approach can be extended in several ways. If the mediator is allowed to

know about the basic tasks and the sorts of transferrable robots, then it can ask questions

like “Can your team complete its task in k steps, while also lending a robot that can carry

a heavy box, before step k′?”. Teams can answer such queries because the background

knowledge that associates tasks with robots can be embedded in action descriptions

and queries, as in (Erdem and Patoglu 2012; Aker et al. 2012; Erdem et al. 2012). The

ASP formulation for finding a coordination can be slightly modified by adding relevant

constraints.

Our algorithm to find an optimal global plan can be embedded in an execution

monitoring framework. When the plan fails during execution, our algorithm can be called

to find an optimal global plan. For subsequent replans, we can reuse the information (e.g.,

roles of teams and bounds for each team) from the previously computed plan.
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Table A 1. Experimental results comparing ASP vs. SAT
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1 2 15 1,2 5 6 212 3.96 6.67
2 3 15 1,2,3 9 9 437 3.92 6.13
3 4 15 1,2,3,4 15 12 525 1.82 3.36

4 2 24 2,4 8 8 127 4.76 7.91
5 3 24 2,4,6 18 12 171 5.37 13.08
6 4 24 2,4,6,8 30 16 293 79.96 151.33

Appendix A Additional Experiments

A.1 Answering Queries: ASP vs. SAT

We can answer queries using CCalc with a SAT solver or with an ASP solver. In the

former case, given an action description and a query, CCalc finds an answer to the query

in the spirit of satisfiability planning (Kautz and Selman 1992): 1) it transforms the action

description and the query into a set of formulas in propositional logic (Giunchiglia et al.

2004); 2) it calls a SAT solver (like manysat) to find a model of all these formulas; 3) if

a model is found then it extracts the solution; otherwise, it answers the query negatively.

In the latter case, given an action description and a query in the language of CCalc,

1) we can use cplus2asp (Casolary and Lee 2011) to transform the action description

and the query into an ASP program; 2) an ASP solver (like Clasp with the grounder

Gringo) can be used to compute an answer set for the program; 3) if an answer set is

found then we can extract the solution; otherwise, the query is answered negatively.

We performed experiments to compare these two approaches, with the same instances

used in our experiments, as explained in Section 6. Table A 1 summarizes the results of

these experiments, comparing the computation times using the ASP solver Clasp with

the grounder Gringo, with the computation times using CCalc with the multi-threaded

SAT-solver manysat (limited to four threads). The computation times are average CPU

times in seconds, obtained over three repeated runs of all scenarios. The time reported

for ASP includes the time spent for grounding by Gringo; the time reported for SAT

includes the time spent for obtaining the propositional theory by CCalc. Note that

except for the computation times used to answer queries, all other numbers are the same

as in Table 1.

We observe from these results that the ASP solver Clasp performs better than CCalc

with the SAT solver manysat in all cases. This is also true for real time (not shown in

tables), not only for CPU time (shown in tables).
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Table A 2. Experimental results comparing two approaches to compute optimal values for

plan length l: linear search vs. binary search
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1 2 15 1,2 5 6 212 6.67
2 3 15 1,2,3 9 9 437 6.13
3 4 15 1,2,3,4 15 12 525 3.36
4 2 24 2,4 8 8 127 7.91
5 3 24 2,4,6 18 12 171 13.08
6 4 24 2,4,6,8 30 16 293 151.33

l:
b
in

a
ry

1 2 15 1,2 5 6 100 8.78
2 3 15 1,2,3 9 9 187 9.96
3 4 15 1,2,3,4 15 12 310 7.78
4 2 24 2,4 8 8 163 215.13
5 3 24 2,4,6 18 12 201 224.32
6 4 24 2,4,6,8 30 16 351 283.63

A.2 Finding Optimal Values: Linear vs. Binary Search

To find the optimal value for a global plan length l, and to find the earliest/latest

lend/borrow times l of individual teams, we can use binary search or linear search.

As discussed in Section 5, one possibility is to apply binary search between 1 and l to

find the earliest lend times and the latest borrow times l, and between 1 and k to find

the optimal value for the global plan length l. With this approach, every team answers

O
(
m·log(k)2

)
queries.

However, the computation time to answer a query drastically increases as the plan

length increases (due to inherent hardness of planning (Turner 2002; Erol et al. 1995)). In

such cases, as suggested by Trejo et al. (Trejo et al. 2001), it is not a good idea to apply

binary search to find the optimal value for a global plan length l.

Meanwhile, given a plan length, queries to find the earliest lend times and the latest

borrow times take about the same time; in such cases, as also suggested by Trejo et al., it

is a good idea to apply binary search to find these optimal values.

Therefore, a better approach might be to use linear search to find the optimal value for

a global plan length l, and binary search to find optimal values for lending/borrowing

times.

We compared these two approaches experimentally over the six scenarios used in our

experiments (Section 6), using CCalc with manysat. Table A 2 shows the results of

these experiments. Results are averages over three runs.

The first section of the table shows the configuration which was already used in Table 1

and Table A 1: l is determined using linear search and within teams the earliest lend and

latest borrow times are determined using binary search. The second section of Table A 2

shows the strategy using binary search in both cases.
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We can observe that these experimental results confirm Trejo et al. (Trejo et al. 2001)’s

results summarized above. For small scenarios, the overall time to find a solution (not

shown in the table) is smaller with two binary searches while for large scenarios using

linear search for l gives a better overall performance. For example, for Scenario 1, a total

of 1012 seconds is required to find the optimal value for l with binary search, while using

linear search requires 1670 seconds. On the other hand, finding the optimal value for l in

Scenario 4 requires 36737 seconds using binary search while linear search requires only

2114 seconds.

Nevertheless the overall time to find the optimal solution increases in all scenarios

either due to an increased effort for answering questions or due to a significantly increased

amount of queries.

Appendix B Proofs

Proof of Proposition 1

Let us denote by FindCollaborationD the decision version of FindCollaboration,

i.e., decide for an existence of a ml-collaboration. We prove that FindCollaborationD
is NP-complete in two parts: membership and hardness.

Membership: Let Σ = {0, 1,∧,∨, ·, ◦, •, ?} be the alphabet, and let Σ∗ denote the set of

all strings over Σ∗. We define a language L to be the set of all strings in Σ of the form

B1 ∧B2 ∧B3 ∧B4 ∧D ∧X ∧ Y where

• B1, B2, B3, B4 are binary representations of the number of Lenders |Lenders|, the number

of Borrowers |Borrowers|, the maximum number of steps l, and the maximum number of

robots m, respectively.

• D has the form D1,1 ∧D1,2 ∧ ... ∧Da,b with each Di,j of the form (Id ∧ Jd) ·D′ where Id
and Jd are the binary representation of lender index i and borrower index j, and D′ is

the binary representation of the value Delay(i, j).

• X has the form Xm1,i1 ∧Xm1,i2 ∧ · · · with each Xm,i of the form (Mx ∧ Ix) ◦ Sx where

Mx and Ix are the binary representation of number m and lender index i, and Sx is the

binary representation of the value Lend earliestm(i).

• Y has the form Ym1,j1 ∧ Ym1,j2 ∧ · · · with each Ym,j of the form (My ∧ Jy) • Sy where

My and Jy are the binary representation of number m and borrower index j, and Sy is

the binary representation of the value Borrow latestm(j),

such that, given an input x ∈ Σ∗ then x ∈ L iff FindCollaborationD with input

corresponding to x returns yes.

Note that FindCollaborationD is a decision problem since FindCollaborationD
returns yes if and only if x∈L.

We will show that FindCollaborationD is in NP by showing that (A) the above

representation x∈Σ∗ is polynomial in the size of an input to FindCollaborationD,

(B) we can describe a guess y of polynomial size corresponding to a potential collaboration

function f , and (C) checking whether y satisfies all conditions of Def. 1 with respect to

input x can be done by a polynomial time algorithm.

(A) The input x∈Σ∗ consists of four numbers and at most 1+2·m functions (Delta plus
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a maximum of m Lend earliest and Borrow latest functions), where Delta has size

O(|Lenders| · |Borrowers| · log(l)) and the other functions are below that. Therefore, |x|
has polynomial size in l·m.

(B) A guess y, corresponding to a collaboration function f , will be of the form F1 ∧ · · · ∧ Fw
with w = O(|Lenders| · |Borrowers| · l · log(m)) = O(|x|4) where each Fi is of the form

(Iu∧Ju)? (Lu∧Mu) with Iu, Ju, Lu,Mu the binary representations of lender iu, borrower

ju, time step lu and number of robots mu, for f(iu, ju) = (lu,mu). Each Fi has linear

size in |x| therefore |y| = O(|x|5) and therefore polynomial.

(C) We can check whether y conforms to all conditions in polynomial time: For condition

(a) and (b), we check at most m values of Borrow latest and Lend earliest functions

for each Borrower and Lender, respectively. Therefore, the checking algorithm takes

polynomial time in |x|.
Hence, FindCollaborationD is in NP.

Hardness: Take any 3-SAT instance F over signature σ of n variables x1, . . . , xn and p

clauses c1, ..., cp of the form cj = (tj,1, tj,2, tj,3), where tj,1, tj,2, tj,3 are literals. We can

reduce F to an instance of FindCollaborationD as follows.

First, we define the sets Lenders and Borrowers. The set of Lenders has n lenders

for each variable in F . We define a function ϕ : Lenders → σ such that ϕ(i) = xi, to

denote the relation between the lenders and the variables, Lenders = {1, ..., n}. The set

of Borrowers is defined for each clause in F , Borrowers = {n+1, ..., n+p}. So there is a

1-1 mapping between lenders and variables, and between borrowers and clauses.

We define l = 2 ∗ |σ| = 2n, and a mapping step(xi) from literal xi, (resp., ¬xi) to time

steps such that step(xi) = i, (resp., step(¬xi) = n+ i).

Given a literal t in F , we denote by occ(t) the number of clauses of F which contain

t. Without loss of generality, we assume that no literal is contained twice in any clause.

Using occ(t) we define a function rNum : {1, . . . , l}→{1, . . . ,m} where m is a positive

integer explained below; rNum associates each time step (i.e., each literal) with a number

of robots.

Intuitively, for each clause c∈F containing literal t, rNum(step(t)) robots must be

transferred to satisfy c. To achieve this, we define rNum such that for each time step u,

the number of robots that must be transferred is larger than the total number of robots

that can be transferred before u, i.e., larger than the number of robots in all previous

steps multiplied by their respective occurrence counts of associated literals:

rNum(1) = 1

rNum(u) = 1+
∑u−1
i=1 rNum(i) · occ(step−1(i)) for 1 < u ≤ l

The constant m is the maximum number of robots that can be given at the latest

time step, i.e., the largest value of rNum for a given 3-SAT instance. This value is

m= rNum(step(¬xn))·occ(¬xn); by eliminating the definition of rNum from the formula,

we obtain the following equation

m=
(
occ(x1)+1

)
· . . . ·

(
occ(xn)+1

)
·
(
occ(¬x1)+1

)
· . . . ·

(
occ(¬xn−1)+1

)
·occ(¬xn).

Since a literal may occur in at most p clauses, m = O(p2n) which is exponential in the

input size. This is not a problem as the value m can be computable in polynomial time and

represented in linear space, moreover our reduction never requires to explicitly represent
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m functions: Lend earliest is defined on three intervals per lender and Borrow latest is

defined on four intervals per borrower, hence a polynomial time reduction.

We define Delay(i, j) = 0, for every i∈Lenders, j ∈Borrowers.
For each lender i, we define Lend earliestm(i) as follows:

Lend earliestm(i) =


step(ϕ(i)) if 1 ≤ m ≤ rNum(step(ϕ(i)))·occ(ϕ(i))

step(¬ϕ(i)) if rNum(step(ϕ(i)))·occ(ϕ(i)) < m and

m ≤ rNum(step(¬ϕ(i)))·occ(¬ϕ(i))

undefined otherwise

Intuitively, each lender i can lend up to rNum(step(ϕ(i)))·occ(ϕ(i)) robots with earliest

time step step(ϕ(i)) or it can lend up to rNum(step(¬ϕ(i)))·occ(¬ϕ(i)) robots with

earliest time step step(¬ϕ(i)).

For each clause cj = (tj,1, tj,2, tj,3) in F , without loss of generality, we assume that

step(tj,1) ≤ step(tj,2) ≤ step(tj,3), and, for each borrower j+n, we defineBorrow latestm(j+n)

as follows:

Borrow latestm(j+n) =


undefined if 1 ≤ m < rNum(step(tj,1))

step(tj,1) if rNum(step(tj,1)) ≤ m < rNum(step(tj,2))

step(tj,2) if rNum(step(tj,2)) ≤ m < rNum(step(tj,3))

step(tj,3) if rNum(step(tj,3)) ≤ m ≤ m
Intuitively, each borrower j+n corresponding to clause cj needs to borrow at least the

number of robots associated with at least one literals in cj , at the latest time step that is

associated with that particular literal.

Example 2 Figure B 1 shows an example reduction from 3-SAT formula F1 = (a ∨ b ∨
¬c) ∧ (c ∨ ¬a ∨ ¬b). Bold lines indicate Lend earliest and Borrow latest functions, e.g.,

lender 2, corresponding to variable b has Lend earliest16(2) = 5. Numbers given next to

bold lines indicate values of rNum for the respective step, e.g., rNum(5) = 16. Note that

occ(t) = 1 for every literal t, hence rNum(step(t)) = 2step(t).

Note that the reduction from 3-SAT to FindCollaborationD can be done in time

polynomial in the size of the input formula. Let us prove that this is a correct reduction:

F is satisfiable iff there is an ml-collaboration between Lenders and Borrowers with at

most m robot transfers and at most in l steps defined above.

Hardness: SAT → collaboration Let I be an interpretation mapping σ to truth values

such that this assignment satisfies F . Here and in the following we denote an interpretation

I by the set of atoms in σ whose values are mapped to true.

We define the collaboration function

f : Lenders×Borrowers→ {0, ..., l} × {0, ...,m}

as follows:

• for every variable s∈ I and for every borrower j+n,

f(ϕ−1(s), j+n) = (step(s), rNum(step(s)))

where clause cj contains s;
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step 1 step 2 step 3 step 4 step 5 step 6

1 a

8 ¬ateam 1:

(lender)

a, ¬a

2
b

16 ¬bteam 2:

(lender)

b, ¬b

4 c

32 ¬c

team 3:

(lender)

c, ¬c

a
b

¬c

1
2

32

team 4:

(borrower)

a ∨ b ∨ ¬c

c

¬a
¬b

4

8

16

team 5:

(borrower)

c ∨ ¬a ∨ ¬b

Fig. B 1. Example hardness reduction for 3-SAT formula F1 = (a ∨ b ∨ ¬c) ∧ (c ∨ ¬a ∨ ¬b)

• for every variable s /∈ I and for every borrower j + n,

f(ϕ−1(s), j+n) = (step(¬s), rNum(step(¬s)))

where clause cj contains ¬s.

Example 3 (ctd) Interpretation I1 = {a, c} satisfies F1 and induces the following col-

laboration f1: f1(1, 4) = (1, 1), f1(2, 5) = (5, 16), f1(3, 5) = (3, 4).

We can now show that f , as obtained above from I, indeed satisfies all conditions of

Def. 1, i.e., it is an ml-collaboration.

• Def. 1(a): I satisfies each clause in F . For every borrower j corresponding to clause

cj = (tj,1, tj,2, tj,3), let tj,k be a literal in cj satisfied by I. Take any borrower j + n.

By our construction of f , there is a lender ik = ϕ−1(var(tj,k)) such that f(ik, j +

n) = (step(tj,k), rNum(step(tj,k))) where step(tj,k)≤ l and rNum(step(tj,k))≤m. Take

m = rNum(step(tj,k))≤m. Then the following hold:

max{step(tj,k)}≤ step(tj,k) = Borrow latestm(j+n)

m≤ rNum(step(tj,k)).

Hence condition (a) holds.

• Def. 1(b): Take any lender i (corresponding to variable ϕ(i)). Consider two cases:
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— Case 1: ϕ(i) ∈ I. Lender i has cooperations with borrowers n+j1, .., n+jq, cor-

responding to clauses cj1 , ..., cjq which contain ϕ(i). Note that q≤ occ(ϕ(i)) and

q= occ(ϕ(i)) if and only if ϕ(i) does not occur multiple times in any clause. The

construction of f is as follows:

f(i, n+j1) = (step(ϕ(i)), rNum(step(ϕ(i))))

...

f(i, n+jq) = (step(ϕ(i)), rNum(step(ϕ(i))))

where step(ϕ(i)) = l1 = · · · = ls≤ l, and rNum(step(ϕ(i))) =u1 = · · · = us≤m.
Take m = rNum(step(ϕ(i)))·occ(ϕ(i)) ≤ m. Then the following hold:

Lend earliestm(i) = step(ϕ(i))≤min{step(ϕ(i))}
m≥ rNum(step(ϕ(i))) · q.

— Case 2: ϕ(i) /∈ I. Lender i has cooperations with borrowers n+j1, .., n+jq, corre-

sponding to clauses cj1 , ..., cjq which contain ¬ϕ(i). Note that q= occ(¬ϕ(i)) and

q= occ(¬ϕ(i)) if and only if ¬ϕ(i) does not occur multiple times in any clause. The

construction of f is as follows:

f(i, n+j1) = (step(¬ϕ(i)), rNum(step(¬ϕ(i))))

...

f(i, n+jq) = (step(¬ϕ(i)), rNum(step(¬ϕ(i))))

where step(¬ϕ(i)) = l1 = · · · = ls ≤ l and rNum(step(¬ϕ(i))) =u1 = · · · = us ≤ m.
Take m = rNum(step(¬ϕ(i)))·occ(¬ϕ(i)) ≤ m. Then the following hold:

Lend earliestm(i) = step(¬ϕ(i))≤min{step(¬ϕ(i))}
m≥ rNum(step(¬ϕ(i)))·q.

Hence condition (b) holds.

Therefore, a function f obtained as shown above from a satisfying assignment I of F is

a collaboration according to Def. 1.

Hardness: collaboration → SAT

Let f be a collaboration function defined via the reduction explained above. We need

to show that there is an interpretation that satisfies F . Without loss of generality, we

assume that Delay(i, j) = 0 for all i, j, and do not mention delay in the following.

Since f is a collaboration function, it satisfies the conditions in Def. 1.

Given f and a borrower j+n corresponding to clause cj , we say that borrower j+n

can complete its task with respect to a literal t∈ cj iff the borrower borrows at least

rNum(step(t)) robots up to time step step(t) (inclusive) and there is no t′ ∈ cj with

step(t)<step(t′) such that the borrower borrows rNum(step(t′)) or more robots at a step

after step(t).

Intuitively, a borrower can complete its task with respect to literal t∈ cj iff its task can

be completed by obtaining robots until step(t) and this is not true for another literal after

that step. Given a collaboration function f , per definition of collaboration each borrower

can complete its task with respect to exactly one literal.
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Example 4 (ctd) In collaboration f1, borrower 4 can complete its task with respect to a

and with respect to no other literal, borrower 5 can complete its task with respect to ¬b,
and not with respect to c because step(c)<step(¬b).

Towards proving the result, we introduce two lemmas.

Lemma 1 If borrower j+n, corresponding to clause cj , can complete its task with respect

to literal tu ∈ cj, then borrower j+n borrows at least one robot from lender ϕ−1(var(tu))

at step step(tu) and that robot cannot be lent before step step(tu).

Intuitively, this lemma states that a borrower which can complete its task with respect

to a certain literal tu always borrows at least one robot from the lender corresponding

to var(tu), and that robot is exchanged at the step corresponding to tu, i.e., at the step

corresponding to the correct (with respect to polarity of the variable) literal.

Example 5 (ctd) Given f1 we saw that borrower 5 can complete with respect to ¬b.
According to Lemma 1, borrower 5 receives at least 1 robot at step(¬b) = 5 which is true

as f1(2, 5) = (5, 16). Intuitively, Lemma 1 holds because borrower 5 requires 16 robots to

complete its task with respect to ¬b whereas lenders can only lend 15 robots in total during

steps 1 . . . 4. Therefore, borrower 5 must receive at least 1 of the 16 robots that can be

given at step 5, and this robot is in addition to 2 robots that could potentially be given at

step 2. (See also Lemma 2 which shows that these 2 robots cannot be given in that case.)

Proof of Lemma 1

• Case 1: tu is a positive literal.

Borrower j+n can complete its task with respect to tu ∈ cj , so it borrows at least

rNum(step(tu)) robots with the latest time step step(tu).

Borrower j+n can cooperate with lenders ϕ−1(var(t1)), ..., ϕ−1(var(tu)).

Towards a contradiction, assume that borrower j+n does not borrow any robots from

lender ϕ−1(var(tu)) at step step(tu). Then there exists a collaboration function f with:

f(ϕ−1(var(tα)), j+n) = (lα,mα)

...

f(ϕ−1(var(tβ)), j+n) = (lβ ,mβ)

where step(t1) ≤ lα ≤ lβ < step(tu) and rNum(step(tu)) ≤ (mα + · · · + mβ) and

max{lα, . . . , lβ} ≤ step(tu). Note that this function excludes borrowing at step step(tu)

hence it excludes

f(ϕ−1(var(tu)), j+n) = (step(tu),m) for every m.

Therefore, the maximum number of robots that borrower j+n can borrow with f is

rNum(step(t1))·occ(t1) + · · ·+ rNum(step(tu−1))·occ(tu−1) =

=
∑u−1
i=1 rNum(step(ti))·occ(ti) = rNum(step(tu))− 1

which is exactly one robot less than borrower j+n needs to be able to complete with

respect to tu.

We have reached a contradiction: there cannot be a collaboration function that satisfies



Finding Optimal Plans for Multiple Teams of Robots through a Mediator 21

condition (a) of Def. 1 without lender ϕ−(var(tu)) lending at least one robot to borrower

j at step step(tu).

• Case 2: tu is a negative literal.

If borrower j+n, corresponding to clause cj , can complete its task with respect to literal

¬tu ∈ cj , then it borrows at least rNum(step(¬tu)) robots with the latest time step

step(¬tu).

Assume that borrower j+n borrows m robots from lender ϕ−1(var(tu)). Then,

Lend earliest(ϕ−1(var(tu)))m = step(tu).

By our construction of Lend earliest, we have m≤ rNum(step(tu))·occ(tu). With this

assumption, there exists a collaboration function f with:

f(ϕ−1(var(tα)), j+n) = (lα,mα)

...

f(ϕ−1(var(tβ)), j+n) = (lβ ,mβ)

f(ϕ−1(var(tu)), j+n) = (lγ ,m)

where step(t1) ≤ lα ≤ lβ ≤ lγ ≤ step(¬t) and rNum(step(¬t))≤ (mα + · · ·+mβ+m) and

max{lα, . . . , lβ , lγ} ≤ step(¬t).
The maximum number of robots borrower j+n can borrow can be computed as follows:

rNum(step(t1))·occ(t1)+ . . .+rNum(step(tu))·occ(tu)+ . . .

. . .+rNum(step(¬tu−1))·occ(¬tu−1) =

=
∑u−1
i=1 rNum(step(ti))·occ(ti) = rNum(step(¬tu))− 1

We have reached a contradiction: there cannot be a collaboration function that satisfies

condition (a) of Def. 1 without lender ϕ−(var(tu)) lending at least one robot to borrower

j at the time step where the lender has the earliest possibility to lend this robot, i.e., at

step step(tu).

Lemma 2 If borrower j+n, corresponding to clause cj , can complete its task with respect

to positive literal t∈ cj (resp., with respect to negative literal ¬t∈ cj) then no borrower

can complete its task with respect to negative literal ¬t (resp., with respect to positive

literal t).

Intuitively, this Lemma states that if a borrower can complete its task with respect to

a certain literal t, no other borrower can complete its task with respect to the negation

of literal t. In terms of truth values and clause satisfiability, Lemma 2 shows that a

collaboration corresponds to a consistent set of literals satisfying all clauses.

Example 6 (ctd) Given f1 borrower 5 can complete with respect to ¬b, Lemma 2 states

that no borrower can complete with respect to b. Intuitively, this holds because lender

2 provides at least one of 16 possible robots at step 5. Therefore, it cannot give robots

already at step 2.
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Proof of Lemma 2

• Case 1: borrower j+n can complete its task with respect to positive literal t∈ cj .
By Lemma 1, borrower j+n borrows at least one robot from lender ϕ−1(var(t)) at step

step(t).

Since lender ϕ−1(var(t)) lends robots with earliest step step(t), by Lend earliest function,

the lender can lend at most rNum(step(t))·occ(t) robots.

Let borrower j′+n be a borrower corresponding to a clause cj′ which contains ¬t. To

complete its task by borrowing robots from lender ϕ−1(var(t)), it needs to borrow at

least rNum(step(¬t)) robots. However, rNum(step(¬t))>rNum(step(t))·occ(t).

Therefore, lender ϕ−1(var(t)) cannot be the lender that satisfies borrower j′+n. In other

words, clause cj′ cannot be satisfied by literal ¬t.
• Case 2: borrower j+n can complete with respect to negative literal t∈ cj .

By Lemma 1, borrower j′+n borrows m≥ 1 robots from lender ϕ−1(var(t)) at step

step(¬t), where

Lend earliest(ϕ−1(var(t))) = step(¬t).
Since lender ϕ−1(var(t)) lends a number of robots with earliest time step as above, this

lender cannot lend any robots before step(¬t). Therefore, lender ϕ−1(var(t)) cannot be

the lender that satisfies a borrower j+n with respect to literal t∈ cj . In other words,

clause cj cannot be satisfied by literal t.

We can now prove that, if f is a ml-collaboration then F is satisfiable.

As f is a collaboration function it satisfies the conditions in Def. 1. By condition (a)

every borrower j+n can complete its task with respect to some literal t∈ cj . Given f , let

J be the set of all literals t s.t. some borrower can complete with respect to t. Due to

Lemma 2 no two borrowers complete their respective tasks with respect to complementary

literals x and ¬x for some variable x. Hence J does not contain both positive and negative

literals for any variable; it is a consistent set of literals.

Each borrower j+n corresponding to clause cj can complete its task with respect to

some literal t∈ J and t∈ c, therefore all clauses of F are satisfied by J . Therefore, given a

collaboration function f , the consistent set of literals J corresonds to a (unique) satisfying

truth assignment I for F .
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