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Abstract. Pathfinding for a single agent is the problem of planning
a route from an initial location to a goal location in an environment,
going around obstacles. Pathfinding for multiple agents also aims to
plan such routes for each agent, subject to different constraints, such as
restrictions on the length of each path, no intersection of paths/plans,
no crossing/meeting each other. It also has variations for finding optimal
solutions with respect to the maximum path length or the sum of plan
lengths. These problems are important for many real-life applications,
such as motion planning, vehicle routing, environmental monitoring,
patrolling, computer games. We evaluate the applicability of Answer Set
Programming to solve variations of multi-agent pathfinding problems, by
experiments with randomly generated problem instances on a grid, on a
real-world road network, and on a real computer game terrain.

1 Introduction

Pathfinding for a single agent is the problem of planning a route from an
initial location to a target location in an environment, going around obstacles.
Pathfinding for multiple agents (PF) also aims to plan such routes for each
agent, but subject to various constraints, such as no self-intersecting paths,
no intersection of paths/plans, no crossing/meeting each other, no waiting idle,
restrictions on the length of each path/plan and on the total length of paths/plans,
and requirements on visiting multiple target locations. PF also has variations for
finding optimal solutions where the goal is to minimize the maximum path/plan
length, the sum of path/plan length, the number of target locations visited,
etc. Some of these PF problems have been studied in the literature, but under
different names. For instance, if it is required that the plans of the agents do
not interfere with each other then PF is called multi-agent pathfinding problem.
Assuming that the agents are homogenous and move one unit at a time, deciding
whether there is a solution of at most k moves to multi-agent pathfinding problem
is NP-complete [19]; its optimization variant is NP-hard [30].
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Despite their difficulty, PF problems have played a significant role in different
applications, such as motion planning [1], vehicle routing and traffic manage-
ment [31, 4, 18], air traffic control [32], computer games [23], disaster rescue [13,
11], formation generation for multi-agent networks [24], patrolling and surveillance
of environment [16, 35].

In these applications, PF is solved subject to various relevant constraints.
For instance, in computer games such as Warcraft III, the routes of agents may
intersect with each other as long as the agent’s plans do not interfere with each
other (i.e., the agents can be at the same location in different time steps, but not
at the same time). On the other hand, in environmental coverage or surveillance,
it may be required that the routes of agents do not intersect with each other
at all so that more areas are covered in a shorter amount of time (note also
the limited power supplied by batteries of robots). In disaster rescue, it may be
required that certain parts of the world are checked by some agent (i.e., they
should be covered by some route) since it is more probable for some people to be
there. To prevent an agent to do all the work, a restriction may be specified on
the length of the route or the duration of the plan for each agent. Furthermore,
the maximum plan length or the sum of plan lengths may be minimized to save
some battery power.

We introduce a formal framework that is general enough to solve many
variations of PF (including the ones mentioned above) declaratively, with the
possibility of guaranteed optimality with respect to some criteria based on plan
lengths, and with the possibility of embedding heuristics. This framework is
based on Answer Set Programming (ASP) [14, 2]—a knowledge representation
and reasoning paradigm with an expressive formalism and efficient solvers. The
idea of ASP is to formalize a given problem as a “program” and to solve the
problem by computing models (called “answer sets” [9]) of the program using
“ASP solvers”, such as Clasp [8]. The expressive formalism of ASP allows us to
easily represent variations of PF, as well as sophisticated heuristics to improve the
computational efficiency and/or quality of solutions. Such a flexible elaboration
tolerant [17] general framework is useful in studying and understanding variations
of PF and different heuristics in different applications. Deciding whether an ASP
has an answer set for nondisjunctive programs is NP-complete [3]; therefore, ASP
is suitable for solving many PF problems.

We investigate the applicability and effectiveness of our ASP-based framework
(from the point of view of computational efficiency and quality of solutions) by
experiments with randomly generated problem instances on a grid, on a real-world
road network, and with a computer game terrain.

The rest of the paper is organized as follows. After providing the formal defini-
tion of multi-agent pathfinding problem and its variants (Section 2), we describe
how these problems can be encoded in ASP (Sections 3 and 4). Experimental
results are presented in Section 5. We review the related work in Section 6, and
conclude by providing a discussion of how our framework can further be improved
in Section 7.

Parts of this paper are discussed in [5].
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2 Pathfinding for Multiple Agents

We consider a general pathfinding problem (i.e., PF) where multiple agents
need to find paths from their respective starting locations to their goal locations,
ensuring that the paths do not collide with static obstacles and that no two
agents collide with each other, and view PF as a graph problem as follows.

Input:

– a graph G = (V,E),
– a positive integer k,
– a function h that maps every positive integer i ≤ k to a pair (vi, ui) of vertices

in V ,
– a set O ⊆ V , and
– a function g that maps every positive integer i ≤ k to a positive integer li.

Output: For every positive integer i ≤ k with h(i) = (vi, ui) and g(i) = li,

– a path Pi = 〈wi,1, . . . , wi,ni〉 for some ni ≤ li from wi,1 = vi to wi,ni =ui in G
where each wi,j ∈ V \O, and

– a function fi that maps every nonnegative integer less than or equal to li to a
vertex in Pi such that,
(i) for every wi,j , wi,j′ in Pi and for every nonnegative integer t< li, if

fi(t) =wi,j and fi(t+1) =wi,j′ then wi,j′ =wi,j or wi,j′ =wi,j+1; and
(ii) for different paths Pi and Pj and positive integers ti≤ li, tj ≤ lj , if

fi(ti) = fj(tj) then ti 6= tj .

Intuitively, graph G characterizes the environment (e.g., a game terrain)
where the agents move around, positive integer k denotes the number of agents,
function h describes the initial and goal locations of agents, set O denotes the
parts of the environment covered by the static obstacles, and function g specifies
the maximum plan length li for each agent i. A path Pi in G from an initial
location vi to a goal location ui characterizes the path that the agent i plans to
traverse. The accompanying function fi denotes which vertices in the path are
visited when; the conditions on fi makes sure that (i) the agent visits consecutive
vertices in Pi at consecutive time steps, or waits at a vertex (e.g., to give way to
other agents), and that (ii) no two agents meet at the same place (e.g., to avoid
collisions).

We define variations of PF by restricting solutions further using the following
constraints (ASP can handle these and more constraints, which we omit for space
reasons):

C No path Pi has a cycle.
This constraint can be useful in cases where robotic agents are not preferred
to visit the same part of the environment many times, for a more efficient
use of their batteries.

I No two different paths Pi and Pj (i< j) intersect with each other.
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This constraint can be useful in cases where it is sufficient if only one robotic
agent visits each part of the environment.

W Waiting of agents is not allowed (e.g., to minimize idle time): for every path
Pi and for every nonnegative integer ti < li, if fi(ti) 6=ui, i.e., agent i has not
yet reached its goal ui, then fi(ti) 6= fi(ti+1).

X Agents cannot “pass through” each other (switch place): for every two
different paths Pi and Pj and for every nonnegative time step t< min(li, lj),
if fi(t) =wx, fi(t+1) =wx′ , and fj(t) =wx′ then fj(t+1) 6=wx.

L The sum of the plan lengths is less than or equal to a given positive integer: for
each agent i, the smallest time step ti such that f(ti) =ui denotes the length

of its plan. Formally the sum of plan lengths is
∑k

i=1 min{ti : f(ti) =ui}.
This constraint can be useful in cases where we want to minimize the total
time (and energy) spent by agents.

Arbitrary combinations of these constraints can be considered to solve varia-
tions of PF. For instance, multi-agent pathfinding problems consider X; some
of them, e.g., [25, 26, 22, 36] focus on finding solutions where the sum of plan
lengths is as small as possible (as suggested by L). Problems studied by pa-
trolling/surveillance applications [16] do not consider X, but since they focus
on finding plans that ensure some parts of the environment are visited by some
agent, they sometimes consider I [35].

An interesting variation of PF aims to reach all goals as soon as possible.
We call this problem TPF, it minimizes maximum plan length over all agents,
formally it minimizes maxk

i=1 min{ti : f(ti) =ui}.

3 Solving PF in ASP

We represent a PF problem as a program P in ASP, whose answer sets correspond
to solutions of the problem. We refer readers to [14, 2], for syntax and semantics
of programs.

We describe the input I = (G, k, h,O, g) of a PF instance by a set FI of facts:
edge(v, u) represents edges (v, u) ∈ E; start(i, v) and goal(i, u) represent start
and goal vertices of each agent i ≤ k (i.e., h(i) = (v, u)); limit(i, li) represents
that g(i) = li; finally clear(v) represents that v ∈ V \O.

The output (Pi, fi) of PF characterizes for each agent i a path plan such that
the agent reaches the goal location from its initial location and avoids obstacles.
We represent path plans by atoms of the form path(i, t, v) which specify that at
time step t, agent i is at vertex v, formally fi(t) = v.

The ASP program P defines path plans recursively. The first vertex visited
by agent i at step 0 is its initial location v:

path(i, 0, v)← start(i, v).

If a vertex v is visited by the agent i at step 0 ≤ t < li, then either the agent
waits at v or it moves along an edge (v, u) to adjacent vertex u:

1{ path(i, t+1, v), path(i, t+1, u) : edge(v, u) }1← path(i, t, v), t < li, limit(i, li).
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where 0≤ t< l and l= max1≤ i≤ k li denotes the overall maximum plan length.
We forbid that an agent uses an obstacle vertex by rule

← path(i, t, v),not clear(v).

We ensure that each agent i reaches its goal v by the rules

← goal(i, v),not visit(i, v)
visit(i, v)← path(i, t, v)

where visit(i, v) describes that the path of agent i contains v.
Finally we enforce that agents do not meet each other by constraints

← path(i, t, v), path(i′, t, v) (v ∈ V, 1 ≤ i < i′ ≤ k, 0 ≤ t ≤ li, lj)

The ASP program P is sound and complete.

Theorem 1. Given a problem instance I = (G, k, h,O, g), for each answer set
S of P ∪FI , the set of atoms of the form path(i, t, v) in S encodes a solution
(Pi, fi) (1 ≤ i ≤ k) to the PF problem. Conversely each solution to the PF
problem corresponds to a single answer set of P ∪FI .

The atoms in P that include time steps only depend on atoms of previous time
steps. So we can use the splitting set theorem and the method proposed in [7]
iteratively at each time step to eventually show (by induction) that the answer
sets for P ∪FI characterize obstacle-free paths for each agent that also avoid
collisions of agents.

4 Solving Variations of PF in ASP

To solve variations of PF in ASP, we simply add to the main program P described
above, a set of ASP rules which encode the relevant constraints. For instance,
to solve multi-agent pathfinding, we add to P the ASP constraints describing
Constraints X. It is important to emphasize here that, we do not modify the rules
of the program P ; in that sense, our formulation of PF in ASP is elaboration
tolerant [17]. Let us see how the constraints are formulated.

Constraint C (i.e., no cycles in a path) can be expressed in ASP by the
following constraint for each agent i∈ 1 . . . k:

← 2{path(i, 0, v), . . . , path(i, li, v)},not goal(v). (v ∈V )

These constraints ensure that, for every agent i, no non-goal vertex in the path
Pi is visited twice or more by the agent i.

Constraint I (i.e., no intersection of paths) is encoded as

← visit(i, v), visit(i′, v) (v ∈V, 1≤ i< i′≤ k)

which ensures that no two agents i, i′ visit the same vertex v.
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Constraint W (i.e., no waiting) can be formalized as

← path(i, t, v), path(i, t+1, v),not goal(i, v) (v ∈ V, 1 ≤ i ≤ k, 0 ≤ t < li).

Constraint X (i.e., no swapping places) can be represented by the following
constraints for pairs of distinct agents i, j:

← path(i, t, v), path(i, t+1, w), path(j, t, w), path(j, t+1, v)
(i 6= j, (v, w)∈E, 0≤ t< li, lj).

Constraint L (i.e., the total plan length is restricted by a positive integer z)
can be formalized in ASP as follows

← totalPlanLength(t) (t > z)

where totalPlanLength(t) (“the sum of all plan lengths is t”) is defined as follows:

totalPlanLength(t)← sum〈{x : planLength(i, x)}〉 = t
planLength(i, t)← path(i, t, v), goal(i, v), path(i, t−1, v′),not goal(i, v′)

(0 < t ≤ li, v, v
′ ∈ V, 1 ≤ i ≤ k).

Here the aggregate sum is used to find the total plan lengths; and planLength(i, t)
describes the plan length for agent i.

We can formalize TPF in ASP, by simply adding to the formulation of PF
in ASP (i.e., program P ), the rules above that define planLength(i, x) and the
following rules:

maxPlanLength(t)← max〈{x : planLength(i, x)}〉 = t
#minimize [ maxPlanLength(t) = t ].

The optimization variant of multi-agent pathfinding, which minimizes the max-
imum plan length, can be represented by adding Constraint X to the formulation
of TPF in ASP.

5 Experimental Results

We performed experiments with various randomly generated instances of PF to
be able to understand

– how the input parameters affect the computation time and solution quality
(i.e., average path plan length);

– how adding constraints to the main problem formulation affects the compu-
tation time and solution quality;

– how various heuristics affect the computation time and solution quality.

We randomly generated problem instances of PF on three sorts of graphs:
random grid graphs, a real road network, and a computer game terrain.

– The grid graphs are of size 25×25, we vary the number of agents k = 5, 10, 15, 20
and the percentage of grid points covered by obstacles o= 10, 20, 40.
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Table 1. PF and TPF on random 25 × 25 grid graphs with a variable number of
obstacles o and agents k.

o k Grounding First Solution Optimal Solution
% sec sec (plan length) sec (plan length)

10

5 0.70 0.27 (30.4) 7.60 (27.4)
10 1.88 0.84 (31.2) 13.39 (29.7)
15 3.43 1.39 (32.9) 18.97 (31.6)
20 6.27 3.66 (33.4) 30.78 (32.6)

20

5 0.39 0.16 (28.0) 4.21 (26.0)
10 1.59 0.68 (31.5) 16.12 (29.6)
15 3.51 1.88 (38.0) 20.71 (36.0)
20 5.90 4.13 (35.8) 31.35 (33.8)

40

5 0.67 0.28 (58.8) 7.12 (54.5)
10 2.10 1.19 (63.8) 18.07 (59.6)
15 3.78 4.99 (62.0) 29.19 (57.8)
20 7.28 10.58 (69.7) 45.30 (66.6)

– The road network dataset [35] consists of 769 vertices and 1130 edges. In our
experiments with this road network, k = 5, 10, 15, 20.

– The computer game terrain dataset [27] is a map (called battleground.map)
of a computer game Warcraft III. It is a 512× 512 grid-based graph which
consists of 262144 vertices and 523264 edges. Among those vertices, 92268 of
them are not covered by obstacles. We only considered those vertices in our
experiments by performing a preprocessing step. In our experiments with this
game terrain, k = 5, 10, 15, 20, 25, we sample k start and goal configurations
with Euclidian distance ≤25.

For grid graphs and the road network, we used a timeout of 1000 CPU seconds
and limited the memory usage to 4GB. For the larger computer game dataset,
we limited the memory usage to 10GB.

We used the ASP solver Clasp (Version 2.1.1) with the grounder Gringo
(Version 3.0.5) on a machine with four 1.2GHz Intel Xeon E5-2665 8-Core
Processors and 64GB RAM. We used Clasp in single-threaded mode with the
command line --configuration=handy as this configuration performs best in
the majority of cases. The reported CPU times are in seconds. Every figure is an
average over 10 randomized instances.

We assumed that the maximum plan length l is identical for every agent. We
started with l= 30 and increased it by 10 if the solver proves that there exists
no plan for that plan length. We repeated this until l= 80 and above that we
considered the problem unsolved.

5.1 Experiments on Artificial Grid Graphs

The goal of these experiments is to understand how the parameters of instances
(n×n: grid size, k: number of agents, o: percentage of obstacles) affect the
computation time.

Table 1 shows results of our experiments, where we vary the number of agents
and the percentage of blocked vertices in the grid graph. Every row in the table
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Table 2. PF and TPF with combinations of C,W,X on random 25×25 grids with
k = 15 agents and o= 20% obstacles. (Sorted by the last column.)

C W X Grounding Solver Time Solver Time Overall Time to
Time First Solution Optimal Solution Optimal Solution
sec sec (length) sec (length) sec

3.30 2.56 (34.8) 19.09 (34.4) 22.39
x 3.71 12.98 (38.1) 37.52 (34.4) 41.33

x 11.24 3.35 (36.7) 32.19 (34.4) 43.43
x 3.64 18.74 (39.0) 48.96 (34.4) 52.60
x x 3.85 27.82 (39.0) 66.31 (34.4) 70.16

x x 11.62 18.30 (39.0) 70.02 (34.4) 81.64
x x 11.61 34.33 (38.6) 103.28 (34.4) 114.89
x x x 11.59 33.32 (39.0) 116.13 (34.4) 127.72

presents three CPU times in seconds, each averaged over 10 random instances:
1) for grounding, 2) for finding some solution (possibly non-optimal, but less
than the given upper bound l on the plan length), and 3) for finding an optimal
solution. The second CPU time (for finding the first solution) is included in the
third CPU time (for an optimal solution). Averages of plan lengths (solution
quality) are presented in parentheses. For instance with o= 40% of obstacles and
k = 20 agents, Gringo grounds the instances in 7.28 seconds, Clasp computes
some solution to PF in 10.58 seconds with a plan length of 69.7; finding an
optimal solution (of length 66.6) takes 45.30 seconds (all numbers are averages
over 10 instances).

We can observe from Table 1 that increasing the number of agents increases
both the grounding time and solving time (first and optimal solution). The
number of obstacles on the other hand primarily influences the plan length of
an optimal solution, e.g., with 20 agents the average optimal plan length is 33.8
steps for 20% obstacles, compared to 66.6 steps for 40% obstacles. While the
plan length of an optimal solution increases with more obstacles, the time spent
to find such a solution stays fairly stable between 10% and 20% obstacles and
increases to less than twice with 50% obstacles. We conclude that solve time is
primarily determined by the number of agents. This can be explained by the
algorithm of the Clasp solver engine which performs very well on constrained
search spaces.

5.2 Experiments with Constraints

The goal of these experiments is to understand the effect of constraints on the
computation time and the solution quality (average plan length). We considered
variations of PF with all combinations of C, W, and X, according to which paths
must not have cycles, agents are forbidden to wait idle, and head-on collisions of
agents are forbidden, respectively.

Table 2 shows the results of these experiments, sorted by the overall time
to compute an optimal solution (i.e., by the sum of Grounding and Optimal
Solution). C and W marginally increase grounding time. Contrary to what
we could assume, W and C do not improve initial solution quality or reduce
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Table 3. PF and TPF with variations of redundancy elimination (E) and circle
heuristics (R) on random 25×25 grid graphs with k = 15 agents and o= 20% obstacles.

E R Grounding Solver Time Solver Time Unsolved
Time First Solution Optimal Solution Instances
sec sec (length) sec (length) # (reason)

3.48 2.44 (34.8) 19.32 (34.4) –
x 16.71 5.23 (36.9) 56.24 (34.4) –

x 1.87 0.95 (37.1) 14.47 (34.5) 2 (no solution)
x x 17.18 2.11 (38.4) 30.33 (34.5) 2 (out of memory)

search time by constraining the problem more, quite the contrary is the case.
X significantly increases grounding time, however it has the least effect of all
constraints on the time of finding initial solutions. All constraints increase the
time to find optimal solutions significantly, their combinations increase that time
even more. This can be explained by a more complex search space; our constraints
do not seem to cut away significant portions of the search space but the result
shows that proving optimality becomes harder.

In summary, adding constraints to PF will increase the time for finding
solutions, for some constraints times increase more, for others they increase less.

Which constraints to add to the main formulation should be decided on a
case-by-case basis depending on the actual application. For instance, since graph
representations are discrete abstractions of an environment, and the computed
discrete paths characterize the continuous trajectories followed by the agents,
X may be ignored in some applications where the agents do not necessarily
follow straight paths. It may not be possible for two agents to move in opposite
directions on an edge (v, u) in the given graph, but it may be possible in the
environment for one agent to move from v to u and the other agent to move from
u to v following different continuous trajectories. On the other hand, for some
other applications where robots move via narrow roads, X may be required.

We also experimented with other constraints: Adding I to the ASP formulation
of PF increases computation time in many problems. Note that since I ignores the
time of an agent visiting a vertex, it may be too strong for many PF applications.
Adding L to the ASP formulation of PF similarly increases computation time in
many problems.

5.3 Experiments with Heuristics

We utilized “circle heuristics” [6] to improve the computational efficiency in terms
of computation time and consumed memory. Circle heuristics identifies for each
agent a subgraph of the given graph that is more “relevant” for that agent to
search for a path: we introduce two “circles” with a given radius around start
and goal positions of the agent, and require that the path connecting start and
goal is contained in the union of these circles. The radius can be defined as a
constant or a function of some distance between start and goal positions. By
preprocessing we identify relevant edges (v, u) of the graph for each agent i as
facts of the form relevantEdge(i, v, u), and replace in P all atoms of the form
edge(v, u) by relevantEdge(i, v, u).
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We also experimented with a “redundancy elimination” heuristics to eliminate
certain redundant moves of agents; moving from vertex u to v via other vertices
is not allowed if an edge (u, v) exists, except if the agent is waiting at u or v:

← path(i, t, u), path(i, t′, v), edge(u, v),not path(i, t+1, u),not path(i, t′−1, v).
(0 ≤ t < t′ < li, t+1 < t′, 1 ≤ i ≤ k, v, u ∈ V, v 6=u)

This heuristics intuitively remove redundancies in paths, and improve the quality
of solutions by making average plan lengths smaller. Note that there may still be
some redundancies, if the specified maximum plan length is not small enough.

To analyze the effect of adding these heuristics, we considered randomly
generated instances of PF, over 25× 25 grid graphs with o= 20% obstacles and
k = 15 agents. With the circle heuristics, for each agent i, we considered a radius of

dED i

2 e+ 3 where ED i is the Euclidean distance between start and goal locations
of agent i.

Table 3 shows the results where each row shows average CPU time (and plan
length) over the same set of 10 random instances that was used in experiments
about constraints (Table 2). Here E and R denote redundancy elimination
and circle heuristics. We can observe that, since the redundancy elimination
heuristic adds further constraints to the problem, the grounding time increases.
These constraints, furthermore, do not constrain the search space enough to
allow the solver engine to find solutions faster; therefore, the solution time also
increases. Contrary to what we expected, solution quality also becomes worse with
redundancy elimination. The additional constraints added seem to be misleading
for the solver, resulting in worse solution quality and worse efficiency.

With the circle heuristics, only some parts of the graph are considered while
computing a solution; therefore, this heuristics significantly reduces both the
grounding time and the time to find an optimal solution. Recall, however, that
with a small value of the radius, the circle heuristics is neither sound nor complete:
the optimal solution found for PF with circle heuristics may not be an optimal
solution for PF; also there may be instances of PF that have some solutions, but
using the circle heuristics eliminates all solutions (as observed in two instances
in Table 3).

In summary, it seems to be a good idea to use the circle heuristics, even
though it is not complete (the solution quality is only marginally different); on
the other hand, redundancy elimination does not help for improving computation
time or solution quality.

5.4 Experiments on a Real Road Network

The results of our experiments with randomly generated instances of PF on
the road network are presented in Table 4. We performed experiments with and
without circle heuristics.

With an increasing number of agents, grounding time does not increase as
fast as the time to prove optimality of the solution. Finding an initial solution is
always very fast in these instances, and the plan length averages indicate that
these initial solutions are often already optimal.
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Table 4. PF and TPF with and without circle heuristics (R) on a road network graph.

k R Grounding First Solution Optimal Solution
sec sec (length) sec (length)

5 1.01 0.30 (27.7) 9.47 (24.4)
10 2.36 0.90 (30.7) 17.43 (29.4)
15 6.62 2.12 (33.7) 27.86 (32.5)
20 10.95 3.50 (33.2) 41.36 (32.7)
25 19.13 7.04 (37.0) 67.09 (34.6)

5 x 1.02 0.16 (29.5) 4.97 (24.4)
10 x 1.39 0.59 (32.0) 11.65 (29.4)
15 x 3.30 1.14 (35.6) 18.16 (32.5)
20 x 4.42 1.68 (34.9) 22.35 (32.7)
25 x 7.60 4.13 (39.2) 37.73 (34.6)

The time to prove optimality is much greater than the time for finding the
initial solution, and the quality of the initial and the optimal solution are very
close to each other. Therefore, on a road network, it might be advantageous to
try to find some solution (rather than an optimal one).

Circle heuristics performs very well in this benchmark: it significantly reduces
grounding time and time to find the first and the optimal solution, while it does
not reduce the solution quality: optimal solution lengths are the same with and
without usage of (R).

5.5 Experiments on a Real Game Terrain

The results of our experiments with randomly generated instances of PF on a
game terrain are presented in Table 5. Again we use consider the usage of circle
heuristics.

Due to the larger grid size, the problem instances are also bigger in terms of
number of facts that describe the map. Therefore grounding consumes a lot of
time for this setting. On the other hand, for applications where the environment
(e.g., game terrain map) does not change, we can do grounding only once and
reuse the ground ASP program for different problem instances in the same
environment.

Due to larger instance sizes, the memory requirements are high: for other
benchmarks memory stays below 4GB, whereas the largest computer game
instance requires 13.4GB without circle heuristics (3.1GB with circle heuristics).

In this domain, an initial solution is found in around a second, whereas finding
an optimal solution and proving its optimality take a significant amount of time.
(Nevertheless, the time to find an optimal solution is still dominated by grounding
time.) Fortunately, the average plan length of initial solutions does not differ
much from the average plan length of optimal solutions. Therefore, as noted
with the road network benchmark, computing only the initial solution might be
sufficient in practice.

Note that instances with 20 agents appear to be easier than those with 15
agents; this is an effect of random generation of instances which created more
instances with long solution paths for 15 agents than for 20 agents.
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Table 5. PF and TPF with and without circle heuristics (R) on game map.

k R Grounding First Solution Optimal Solution Memory
sec sec (length) sec (length) MB

5 4.41 0.88 (34.8) 24.68 (29.0) 919.4
10 10.02 2.32 (33.0) 46.11 (33.0) 2168.5
15 25.82 6.16 (45.7) 137.64 (45.7) 5843.7
20 17.05 3.87 (35.3) 85.05 (35.3) 4416.4
25 30.45 7.19 (40.3) 161.21 (40.3) 7728.8

5 x 22.94 0.29 (34.8) 9.07 (29.0) 449.8
10 x 56.48 0.81 (34.7) 23.14 (33.0) 975.3
15 x 109.09 1.25 (45.7) 29.45 (45.7) 1763.7
20 x 80.76 1.14 (35.3) 26.71 (35.3) 1588.6
25 x 119.90 1.82 (40.3) 40.48 (40.3) 2365.3

The usage of circle heuristics is clearly advantageous in this setting; it does
not reduce solution quality but it reduces memory and time usage.

6 Related Work

Our formal framework for PF is general enough to solve variations of pathfinding
problems with multiple agents, including multi-agent pathfinding (MAPF), multi-
robot routing, etc. Many of these variants have been studied in the literature;
thus a comprehensive comparison with the existing approaches is not possible
within limited space. Therefore, we briefly discuss related work on MAPF, and
report some preliminary experimental results.

Most of the existing solutions to MAPF apply some sort of A* search algorithm,
with decoupled pathfinding or centralized pathfinding approach. In the former
approach [23, 4, 33, 10], a path is computed for each agent independently; in
case a conflict occurs (e.g., two agents attempt to move to the same location),
it is resolved by replanning one of the conflicting agents’ route. Although this
approach could be used to solve large MAPF instances quickly, it lacks the
optimality and completeness guarantees. The latter approach [20, 29, 25] considers
the multi-agent system as a single-agent system by combining state spaces of
each agent into one state space and then use a search algorithm to find paths
for all agents simultaneously. Although the centralized approach can guarantee
optimality and completeness, it is not as efficient (in terms of computation time)
as the decoupled approach for large problems. More recently, some decoupled
pathfinding algorithms [15, 34] are introduced to guarantee completeness for
some graphs; and some [26] optimality. Some centralized planners [21, 12] use
heuristics to find suboptimal solutions to improve computational efficiency. Our
approach to MAPF is centralized, guarantees various sorts of optimality (thanks to
elaboration tolerant representation of PF and various constraints), soundness and
completeness (Theorem 1). As observed from experiments, with some heuristics,
the computational efficiency can be improved also.

Some of the related work on MAPF considers grid-based graphs [23, 4, 25],
and some consider trees [12]. Our approach is applicable to arbitrary graphs.
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It is important to emphasize here that, unlike our ASP-based approach, the
search-based methods above do not provide a formal framework; and thus it is
hard to ensure and verify various properties (e.g., constraints mentioned above)
over paths unless the modeling of the problem and the implementation of the
algorithm are modified for each case.

One of the closest related work to ours is [36]: like our approach, the authors
introduce a formal framework for solving MAPF to minimize overall plan length
on arbitrary graphs with a centralized approach, but using integer linear pro-
gramming (ILP) instead of ASP. Differently to Yu and Lavalle, our approach
is general enough to solve variations of PF, some of which are not (or not eas-
ily) representable in ILP (e.g., acyclicity constraints). We compared the ILP
approach to ours using 180 randomly generated TPF instances of 25x25 grid
graphs with 0-40% obstacles, and with either 10 or 20 agents (10 instances for
each configuration). We used 1000 seconds timeout. We observed that memory
usage was higher for ILP (<10GB) than for ASP (<4GB). With 10 agents, ILP
found optimal solutions faster (3 seconds) than ASP (11 seconds); average plan
length was 27 steps. With 20 agents, ILP did not return a solution for 7 of the 180
instances and solved the remaining instances in 42 seconds on average (deviation
74 seconds), while ASP timed out only for 2 of 180 instances and found optimal
solutions for the other instances in 50 seconds on average (deviation 36 seconds);
average plan length was 30 steps. We observed that an increased amount of
obstacles degrades both ILP and ASP performance, however ILP performance
degrades much stronger. This is because ILP is based on linear optimization with
additional support for boolean variables, while ASP is well-suited for finding
solutions to highly constrained boolean search spaces.

Although the approaches are quite different, we also compared our (centralized,
complete, optimal) ASP-based approach with the state-of-the-art (decoupled,
incomplete, nonoptimal) MAPF solver Mapp [34] with some randomly generated
instances of the game Baldur’s Gate, described in [34].1 Preliminary results
conform with our expectations (as also observed in previous studies comparing
decoupled and centralized approaches): in terms of computation time, Mapp
performs better than our approach as the number of agents and the size of the
grid increase; on the other hand, some problems with multiple conflicts cannot
be solved by Mapp, while they can be solved by our approach. A more detailed
comparison is a part of our ongoing work.

It is important to pinpoint here that, since our ASP-based formal framework
is general enough to solve many variations of the multi-agent pathfinding problem,
thanks to the high-level representation language of ASP, it can be viewed as
complementary to the existing approaches.

1 Currently, Mapp is the only operational search-based state-of-the-art MAPF solver
made available to us by its authors (December 2012). Push and Swap [15] is not
available since it is being revised by the authors (personal communication, December
2012). WHCA*(w,a) [28] (an enhancement of WHCA* [23]) provided to us by its
authors is not operational since it has not been maintained for a while (personal
communication, December 2012).
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7 Discussion and Conclusion

We have introduced a general formal framework to solve various pathfinding
problems with multiple agents (PF), using ASP. We have shown that, due to the
expressive formalism of ASP, we can easily represent PF and its variations subject
to different constraints on the paths, and heuristics to improve computational
efficiency and quality of solutions. Such a flexible elaboration tolerant framework
is important in studying and understanding PF and its applications in different
domains (e.g., motion planning, vehicle routing, environmental monitoring, pa-
trolling/surveillance, computer games). In particular, that our framework can
be applied to any sort of graphs (e.g., not necessarily grid graphs or trees) is
advantageous for various robotic applications.
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