
A Systematic Analysis of Levels of Integration
between Low-Level Reasoning and Task Planning

Peter Schüller, Volkan Patoglu, Esra Erdem

Abstract—We provide a systematic analysis of levels of integra-
tion between discrete high-level reasoning and continuous low-
level reasoning to address hybrid planning problems in robotics.
We identify four distinct strategies for such an integration: (i)
low-level checks are done for all possible cases in advance and
then this information is used during plan generation, (ii) low-level
checks are done exactly when they are needed during the search
for a plan, (iii) first all plans are computed and then infeasible
ones are filtered, and (iv) by means of replanning, after finding
a plan, low-level checks identify whether the plan is infeasible or
not; if it is infeasible, a new plan is computed considering the
results of previous low-level checks. We perform experiments on
hybrid planning problems in housekeeping and legged locomotion
domains considering these four methods of integration, as well as
some of their combinations. We analyze the usefulness of different
levels of integration in these domains, both from the point of
view of computational efficiency and from the point of view of
plan quality relative to its feasibility. We discuss advantages and
disadvantages of each strategy in the light of experimental results
and provide some guidelines on choosing proper strategies for a
given domain.

I. INTRODUCTION

Successful deployment of robotic assistants in our society
requires these systems to deal with high complexity and wide
variability of their surroundings to perform typical everyday
tasks robustly and without sacrificing safety. Consequently,
there exists a pressing need to furnish these robotic systems
not only with discrete high-level reasoning (e.g., task plan-
ning, diagnostic reasoning) and continuous low-level reasoning
(e.g., trajectory planning, deadline and stability enforcement)
capabilities, but also their tight integration resulting in hybrid
planning.

Motivated by the importance of hybrid planning, recently
there have been some studies on integrating discrete task
planning and continuous motion planning. These studies can
be grouped into two, where integration is done at the search
level or at the representation level. For instance, [12, 13,
17, 22, 23, 21] take advantage of a forward-search task
planner to incrementally build a task plan, while checking
its kinematic/geometric feasibility at each step by a motion
planner; all these approaches use different methods to utilize
the information from the task-level to guide and narrow the
search in the configuration space. By this way, the task planner
helps focus the search process during motion planning. Each
one of these approaches presents a specialized combination

This work is partially supported by TUBITAK Grant 111E116. Peter
Schüller is supported by TUBITAK 2216 Research Fellowship.

P. Schüller, V. Patoglu, E. Erdem are with Faculty of Engi-
neering and Natural Sciences, Sabancı University, İstanbul, Turkey
{peterschueller,esraerdem,vpatoglu}@sabanciuniv.edu

of task and motion planning at the search level, and does not
consider a general interface between task and motion planning.

On the other hand, [4, 15, 7, 8] integrate task and mo-
tion planning by considering a general interface between
them, using “external predicates/functions”, which are pred-
icates/functions that are computed by an external mecha-
nism, e.g., by a C++ program. The idea is to use external
predicates/functions in the representation of actions, e.g., for
checking the feasibility of a primitive action by a motion
planner. So, instead of guiding the task planner at the search
level by manipulating its search algorithm directly, the motion
planner guides the task planner at the representation level
by means of external predicates/functions. [4, 7] apply this
approach in the action description language C+ [11] using
the causal reasoner CCALC [20]; [8] applies it in Answer Set
Programming (ASP) [19, 3] using the ASP solver CLASP [10];
[15] extends the planning domain description language PDDL
[9] to support external predicates/functions (called semantic
attachments) and modifies the planner FF [16] accordingly.

In these approaches, integration of task and motion planning
is achieved at various levels. For instance, [7, 8] do not
delegate all sorts of feasibility checks to external predicates as
in [4, 15], but implements only some of the feasibility checks
(e.g., checking collisions of robots with each other and with
other objects, but not collisions of objects with each other) as
external predicates and use these external predicates in action
descriptions to guide task planning. For a tighter integration,
feasibility of task plans is checked by a dynamic simulator; in
case of infeasible plans, the planning problem is modified with
respect to the causes of infeasibilities, and the task planner is
asked to find another plan.

In this paper, our goal is to better understand how much
of integration between high-level reasoning and continuous
low-level reasoning is useful, and for what sort of robotic
applications. For that, we consider integration at the represen-
tation level, since this approach allows a modular integration
via an interface, external predicates/functions, which provides
some flexibility of embedding continuous low-level reasoning
into high-level reasoning at various levels. Such a flexible
framework allowing a modular integration is important for a
systematic analysis of levels of integration.

We identify four distinct strategies to integrate a set of con-
tinuous feasibility checks into high-level reasoning, grouped
into two: directly integrating low-level checks into high-
level reasoning while a feasible plan is being generated,
and generating candidate plans and then post-checking the
feasibility of these candidate solutions with respect to the
low-level checks. For direct integration we investigate two

methods of integration: (i) low-level checks are done for all
possible cases in advance and then this information is used
during plan generation, (ii) low-level checks are done when
they are needed during the search for a plan. For post-checking
we look at two methods of integration: (iii) all plans are
computed and then infeasible ones are filtered, (iv) by means
of replanning, after finding a plan, low-level checks identify
whether it is infeasible or not; if it is infeasible, a new plan is
computed considering the results of previous low-level checks.
We consider these four methods of integration, as well as some
of their combinations; for instance, some geometric reasoning
can be integrated within search as needed, whereas some
temporal reasoning is utilized only after a plan is computed
in a replanning loop. Considering each method and some of
their combinations provide us different levels of integration.

To investigate the usefulness of these levels of integration at
representation level, we consider 1) the expressive formalism
of HEX programs for describing actions and the efficient HEX
solver dlvhex to compute plans, and 2) the expressive formal-
ism of ASP programs for describing actions and the efficient
ASP solver CLASP to compute plans. Unlike the formalisms
and solvers used in other approaches [4, 15, 7, 8], that study
integration at representation level, HEX [5] and dlvhex [6]
allow external predicates/functions to take relations (e.g., a
fluent describing locations of all objects) as input without
having to explicitly enumerate the objects in the domain. Other
formalisms and solvers allow external predicates/functions
to take a limited number of objects and/or object variables
as input only, and thus they do not allow embedding all
continuous feasibility checks in the action descriptions. In
that sense, the use of HEX programs with dlvhex, along with
the ASP programs with CLASP enriches the extent of our
experiments.

We perform experiments on planning problems in a house-
keeping domain (like in [8]) and in a legged locomotion
domain (like in [2, 1]). The housekeeping examples involve ge-
ometric reasoning (i.e., collision checks), temporal reasoning
(i.e., restrictions on the total duration of plans), whereas legged
locomotion examples involve stability checks and reachability
checks. We analyze the usefulness of levels of integration in
these domains, both from the point of view of computational
efficiency (in time and space) and from the point of view of
plan quality relative to its feasibility.

II. LEVELS OF INTEGRATION

Assume that we have a task planning problem instance
H (consisting of an initial state S0, goal conditions, and
action descriptions) in a robotics domain, represented in some
logic-based formalism. A history of a plan 〈A0, . . . , An−1〉
from the given initial state S0 to a goal state Sn computed
for H consists of a sequence of transitions between states:
〈S0, A0, S1, A1, . . . , Sn−1, An−1, Sn〉. A low-level continuous
reasoning module gets as input, a part of a plan history
computed for H and returns whether this part of the plan
history is feasible or not with respect to some geometric,
dynamic or temporal reasoning.

For example, if the position of a robot at step t
is represented as robot at(x, y, t) and the robot’s ac-
tion of moving to another location (x′, y′) at step t
is represented as move to(x′, y′, t), then a motion plan-
ner could be used to verify feasibility of the movement
〈robot at(x, y, t),move to(x′, y′, t), robot at(x′, y′, t+ 1)〉.
If duration of this action is represented as well, e.g.,
as move to(x, y, duration, t), then the low-level module
can find an estimate of the duration of this movement
relative to the trajectory computed by a motion plan-
ner, and it can determine the feasibility of the movement
〈robot at(x, y, t),move to(x′, y′, t), robot at(x′, y′, t + 1)〉
by comparing this estimate with duration .

Let L denote a low-level reasoning module that can be
used for the feasibility checks of plans for a planning problem
instance H . We consider four different methods of utilizing L
for computing feasible plans for H , grouped into two: directly
integrating reasoning L into H , and post-checking candidate
solutions of H using L.

For directly integrating low-level reasoning into plan gen-
eration, we propose the following two levels of integration:

• PRE – Precomputation We perform all possible feasibility
checks of L that can be required by H , in advance. For
each failed check, we identify the actions that cause the
failure, and then add a constraint to the action descriptions
in H ensuring that these actions do not occur in a
plan computed for H . We then try to find a plan for
the augmented planning problem instance Hpre . Clearly,
every plan obtained with this method satisfies all low-
level checks.

• INT – Interleaved Computation We do not precompute
anything, but we interleave low-level checks with high-
level reasoning in the search of a plan: for each action
considered during the search, the necessary low-level
checks are immediately performed to find out whether
including this action will lead to an infeasible plan. An
action is included in the plan only if it is feasible. The
results of feasibility checks of actions can be stored not
to consider infeasible actions repeatedly in the search of a
plan. Plans generated by interleaved computation satisfy
all low-level checks.

Let us denote by LPRE and LINT the low-level checks directly
integrated into plan generation, with respect to PRE and INT,
respectively.

Alternatively, we can integrate low-level checks L with H ,
by means of post-checking candidate solutions of H relative
to L. We propose the following two methods to perform post-
checks on solution candidates:

• FILT – Filtering: We generate all plan candidates for H .
For each low-level check in L, we check feasibility of
each plan candidate and discard all infeasible candidates.

• REPL – Replanning: We generate a plan candidate for
H . For each low-level check in L, we check feasibility
of the plan candidate. Whenever a low-level check fails,
we identify the actions that cause the failure, and then add

Precomputation

Planning
(ASP Solver)

Postcheck

LPRE

LINT

LPOST

Hpre

candidate solution

feasible solution

H

H+ constraints

Fig. 1. Components and data flow.

a constraint to H ensuring that these actions do not occur
in a plan computed for H . We generate a plan candidate
for the updated planning problem instance H+ and do the
feasibility checks. We continue with generation of plan
candidates and low-level checks until we find a feasible
plan, or find out that such a feasible plan does not exist.

Let us denote by LPOST the low-level checks done after plan
generation, with respect to FILT or REPL.

Figure 1 shows the hybrid planning framework we use in
this paper to compare different levels of integration, and com-
binations thereof, on robotics planning scenarios. In particular,
Fig. 1 depicts computational components: Precomputation
extends the problem instance H using a low-level reasoning
module LPRE, Planning integrates a low-level reasoning mod-
ule LINT into its search for a plan candidate for the problem
instance Hpre generated by Precomputation. Postcheck uses
a low-level module LPOST to verify solution candidates (using
FILT or REPL) and to potentially add constraints H+ to the
input of Planning.

In our systematic analysis of levels of integration, we do
consider this hybrid framework by disabling some of its
components. For instance, to analyze the usefulness of PRE,
we disable the other integrations (i.e., LINT = LPOST = ∅); to
analyze the usefulness of a combination of PRE and FILT, we
disable other integrations (i.e., LINT = ∅).

III. METHODOLOGY

We investigate the usefulness of levels of integration, con-
sidering solution quality and computation times.

A. Solution Quality

If some low-level module L is not integrated into the
planning process, some plan candidates will be infeasible
due to failed low-level checks of L. We quantify solution
quality by measuring the number of feasible and infeasible
plan candidates generated by the search for a plan. This way
we obtain a measure that shows how relevant a given low-
level check is for plan feasibility. Note that with the FILT
approach an infeasible plan candidate simply causes a new
plan to be generated, while with REPL an infeasible plan
candidate causes computation of additional constraints, and
a restart of the plan search.

Tightly connected to the number of feasible and infeasible
solution candidates is the number of low-level checks per-
formed until finding the first feasible plan, and until finding
all feasible plans.

B. Planning Efficiency

We quantify planning efficiency by measuring the time
required to obtain the first feasible plan, and the time to
enumerate all feasible plans. (Note that this includes proving
that no further plan exists.)

Independent from the number of low-level checks, the
duration of these external computations can dominate the
overall planning cost, or it can be negligible. Therefore we
measure not only the number of computations of low-level
modules but also the time spent in these computations.

IV. DOMAINS AND EXPERIMENTAL SETUP

For our empirical evaluation we use the Housekeeping
and the Legged Locomotion domains. Both require hybrid
planning. We next give an overview of the domains, their
characteristics, and scenarios we used.

A. Housekeeping

In Housekeeping, multiple autonomous robots collabora-
tively tidy up a house, by putting items in rooms to their proper
places, for example dirty dishes are put into the dishwasher,
books into the bookcase, and pillows into the bed. The domain
we use is similar to [8]: robots can move from certain locations
to other locations, they can attach to and detach from objects,
some objects must be carried collaboratively as they are heavy.
Detecting that the plan is the shortest possible plan, and
creating a plan that has a feasible trajectory for each robot,
requires geometric and temporal low-level reasoning.

We use two external low-level reasoning components:
checking whether a path exists from one place in the world
to another place (L∃) and computing the quasi-optimal path
to estimate the time that is required for moving along that
path (Lopt). Both checks are realized using the RRT (Rapidly
Exploring Random Trees) approach [18] in C++; in L∃ we
immediately abort sampling when we find a solution, for
Lopt we sample for a longer amount of time and apply path
smoothening to obtain shorter paths. If the motion planner
does not return a solution in a given amount of time (which
is determined over experiments), the action is considered
infeasible; in such cases feasible high-level plans (if there
exists one) can be missed.

We perform tests on 17 Housekeeping instances (over 8× 8
grid) with up to 5 robots and 8 objects, which require plans
up to 12 steps (average 7) and up to 41 actions in a single
plan (average 22).

B. Legged Locomotion

In the Legged Locomotion domain, a robot with high
degrees of freedom must find a plan for placing its legs and
moving its center of mass (CM) in order to move from one
location to another one.

TABLE I
EFFICIENCY COMPARISON

Integration Overall Time Low-Level Reasoning
Method FIRST ALL time ALL count ALL

sec sec sec #
Housekeeping (17 instances)

FILT 5972 (14) 6684 (14) 13 26
REPL 3126 (2) 5641 (13) 307 657
PRE 3479 6272 (12) 3256 8192
INT 1046 4488 (10) 534 1168

Legged Locomotion (averages over 15 instances)
FILT 4663 (9) 4919 (10) 672 25834
REPL 2876 (5) 5073 (10) 5 207
INT 84 170 8 12344

Lleg : Lbal :
PRE FILT
PRE REPL
PRE INT

4193 (6) 4943 (9) 1732 62489
3081 (5) 5191 (10) 349 10105

408 432 351 20538
Numbers in brackets count timeouts for FIRST resp. ALL.

For the purpose of studying integration of geometric rea-
soning with high-level task planning, we created a planning
formulation for a four-legged robot that moves on a 10× 10
grid. Some grid locations are occupied and must not be used
by the robot. Starting from a given initial configuration, the
robot must reach a specified goal location where all legs are
in contact with the ground.

As legged robots have high degrees of freedom, legged lo-
comotion planning deals with planning in a high-dimensional
space. We use a planning problem that is of similar complexity
as has been investigated in climbing [1] and walking [14]
robots. We also require a feasibility check of leg placement
actions. We allow concurrent actions, i.e., moving the center
of mass while detaching a leg from the ground, if this does
not cause the robot to lose its balance.

We use a low-level reasoning component that determines
whether the robot is in a balanced stable equilibrium (Lbal),
given its leg positions and the position of its CM. We realize
this check by computing the support polygon of legs that are
currently connected to the ground, and by checking if CM is
within that polygon.

A second low-level module determines if leg positions are
realistic wrt. the position of CM, i.e., if every leg can reach
the position where it is supposed to touch to the ground. This
check (Lleg) is realized as a distance computation between
coordinates of legs and CM.

C. Domain Characteristics and Notable Differences

These two domains exhibit various differences in their
characteristics.

Complexity of low-level reasoning. In Housekeeping, the
low-level reasoning modules are realized in an executable that
performs motion planning to check feasibility of actions. On
the contrary, in Legged Locomotion we use a C++ geomet-
ric library to perform basic geometric operations which are
sufficient for computing check results.

TABLE II
SOLUTION QUALITY COMPARISON

Integration Infeasible Candidates Plans found Feasible Plans
Method FIRST ALL ALL ALL

%
Housekeeping (averages over 17 instances)

FILT 2538 107476 28 <0.1
REPL 44 107 1575 93.6
PRE 0 0 43790 100.0
INT 0 0 348770 100.0

Legged Locomotion (averages over 15 instances)
FILT 5253 25698 8 <0.1
REPL 20 118 15 11.3
INT 0 0 56 100.0

Lleg : Lbal :
PRE FILT
PRE REPL
PRE INT

24740 52482 12 <0.1
16 94 17 15.3

0 0 56 100.0

Information relevant for low-level reasoning. In House-
keeping, both low-level modules operate on a pair of coor-
dinates for each robot movement action, hence the amount
of information required for a low-level check is limited.
We use instances with a 8×8 grid, therefore precomputation
of L∃ and Lopt is feasible; each check must be done for
84 =4096 possible inputs. In Legged Locomotion we use a
10×10 grid. Lleg is a check over two coordinates as in the
Housekeeping domain, therefore there are 104 possible inputs,
precomputation is feasible. However, for the balance check
Lbal we have an input of four leg coordinates and one CM
coordinate, therefore in our grid there are 1010 possible inputs
which makes precomputation infeasible. Hence for Legged
Locomotion we apply precomputation only to Lleg .
Independence of low-level modules. In Housekeeping, a
successful check of path existence L∃ is a prerequisite for
the more costly shortest path check Lopt . In Legged Locomo-
tion, Lleg and Lbal check independent geometric concerns.
In Housekeeping experiments we therefore apply the same
integration method to L∃ and Lopt and thus consider four
different settings. Different from that, in Legged Locomotion
we consider six settings and vary the level of integration along
two dimensions, configuring Lleg independently from Lbal .

V. EXPERIMENTAL RESULTS

We applied each of the above scenarios to 17 Housekeeping
and 15 Legged Locomotion instances of varying size and
difficulty. As some instances have many solutions, and some
methods proved to be very slow compared to others, we use
a timeout of 2 hours (7200 seconds) after which we stop
computation and take measurements until that moment. All
experiments are performed on a Linux server with 32 2.4GHz
Intel R© E5-2665 CPU cores and 64GB memory. We used the
ASP solver dlvhex for INT experiments, and CLASP with
GRINGO for the rest of the experiments.

Tables I and II present results for
• FIRST: obtaining the first feasible plan,
• ALL: obtaining all feasible plans or hitting the timeout.

In most practical applications, performance of FIRST will
be more relevant. However ALL reveals additional information
about solution quality, and it provides a more robust picture
of the behavior of each method: one method might find a first
solutions very fast by chance, whereas finding many or all
solutions fast by chance is an unlikely event.

The left column shows which method of integration was
used.

A. Time Measurements

For obtaining the first solution, we present the average over
all runs where not finding a solution was counted as the
timeout of 7200 seconds.

The INT approach clearly outperforms other approaches for
finding the first solution. FILT is worst in terms of runtime and
in terms of solutions obtained. When comparing replanning
and precomputation, we see that REPL takes less time but
does not find solutions for some instances, while PRE takes
more time, always finds some solution, and enumerates much
more solutions than PRE. Therefore, the larger effort of PRE in
low-level reasoning might pay off in terms of solved instances.

B. Solution Quality

Table II shows that PRE and INT do not generate infeasible
solution candidates, as they use all low-level checks already
in search.

If we compare the number of infeasible solution candidates
of FILT and REPL in Housekeeping, we observe that FILT
generates too many infeasible candidates compared to the
number of solutions (107476 vs. 28) while REPL creates a
moderate amount of infeasible solution candidates compared
to the number of feasible plans (107 vs. 1575).

In Legged Locomotion the results for FILT are similar, how-
ever REPL performs worse than in Housekeeping (it produces
118 infeasible candidates and 15 solutions). We can explain
this difference in solution quality by the larger amount of
possible inputs to Lbal compared to the other low-level checks:
each failed Lbal check can constrain the search space for
candidate solutions only by a small amount, so REPL cannot
avoid as many infeasible solutions in Legged Locomotion as
in Housekeeping.

To ensure that timeouts do not affect our analysis of solution
quality, we also performed an analysis over those instances
without timeouts; these results are not shown in the tables
above due to space restrictions. For this set of instances, we
can find all 28 solutions for Housekeeping, and all 8 solutions
for Legged Locomotion. FILT is the worst option in terms of
solution quality: it generates 2539 infeasible candidates for
Housekeeping and 3948 for Legged Locomotion (FILT/FILT).
REPL is better: 14 in feasible candidates for Housekeeping
and 48 for Legged Locomotion (REPL/REPL); note that REPL
still performs better for Housekeeping examples.

C. Effort Spent in Low-Level Checks

In Legged Locomotion, the FILT approach spends most of
its time in low-level checks, as it is not guided by earlier failed

checks. Moreover these checks depend on a large part of the
candidate plan, so caching is not effective. Contrarily, REPL
is guided by failed checks and spends more time searching for
solution candidates and less time in low-level checks.

Using FILT with a precomputed Lleg makes it much faster:
we observe that PRE/FILT finds solutions to 3 more instances
than FILT/FILT, performs much more low-level checks than
FILT/FILT and spends more time in these checks. The reason
for that is the more constrained search space given precom-
puted leg range checks, this makes the solver find more
solution candidates in the same time, therefore more time can
be spent for low-level reasoning.

In Housekeeping the situation looks very different: FILT
requires only very little effort in low-level checks. This might
seem unintuitive at first, however the reason is that both L∃
and Lopt depend on a small set of inputs, therefore the basic
cache we implement can mark many solution candidates as
infeasible, and the effort spent in low-level checks stays low.
As FILT is not guided by earlier failed checks, the solver
generates many similar solutions; the cache has the effect that
these similar and infeasible solutions can be discarded without
considerable effort in external computations.

To obtain a fair comparison between precomputation and the
other approaches, we include times and counts of precomputed
low-level checks in Table I (which explains their large values).

VI. DISCUSSION AND CONCLUSION

Our experiments suggest the following. If robust and highly
complex reasoning is required, and if this reasoning is done
frequently (so that performance gains will become relevant)
then using full interleaved reasoning (INT) is the only good
option. INT has the best performance with respect to runtimes,
and it can enumerate most solutions compared to other ap-
proaches. The reason is, that INT uses only those low-level
checks which are necessary (they are computed on demand)
and therefore does not overload the solver with redundant
information (as PRE does). Furthermore, INT considers failed
checks in the search process and thereby never picks an action
where it is known that the action will violate a low-level
check. This is similar as in the REPL approach, but much
more efficient as the integration is much tighter compared to
REPL. However, the performance of INT comes at a price: (a) it
requires more memory than generating solution candidates and
checking them afterwards, and (b) it requires a solver that
allows for interacting with the search process in a tight way,
usually through an API that has to be used in a sophisticated
way if it shall be efficient. Therefore INT will not be usable
for certain applications and solvers.

If reasoning operates on a manageable amount of inputs,
such that precomputation is a feasible option, then PRE is a
good choice. In the Housekeeping experiments, even when
spending half the time until the timeout in precomputation,
PRE outperforms FILT and REPL when it comes to finding a
solution and enumerating solutions. It does not outperform
INT, however, and only simple reasoning tasks with few
possible input parameters can be handled with PRE.

As we did in the Legged Locomotion experiments, PRE can
be combined with other approaches. If we reduce the times in
Table I by the time required for doing the precomputation (346
seconds), then we see that adding PRE to other approaches
always makes these approaches faster. For instance, INT/INT
requires 84 seconds to find the first solution, while PRE/INT
requires 408 seconds, where 346 seconds are precomputation
time such that the actual search only takes 63 seconds.
Therefore, we conclude that precomputation can be considered
a possibility (if it is applicable).

The filtering approach turns out to be the worst, because
nothing guides the search into the direction of a feasible so-
lution. Therefore, FILT enumerates many infeasible solutions
and might find no feasible solution for a very long time.

If precomputation and full interleaving is not possible
(either because it is too complicated to setup in practice, or if
no suitable reasoner for INT is available) then REPL should be
used. It does not have the same performance as INT and PRE
have, however it is a very robust approach, as it is guided by its
wrong choices — and we can think of the constraints that are
added for failed low-level checks as the approach ‘learning
from its mistakes’. The benchmark results clearly show the
robustness of REPL compared to FILT: it has only 2 timeouts
for finding a feasible plan for the 17 Housekeeping instances,
while FILT has 14 timeouts.

A possible improvement to REPL could be to let it enumer-
ate a certain amount of solutions to gather more constraints,
then add all these constraints and restart the search. This is a
hybrid approach between FILT and REPL. Selecting the right
moment to abort enumeration and restart the solver is crucial
to the performance of such a hybrid approach, and we consider
this a worthwile subject for future investigations.

REFERENCES

[1] Timothy Bretl, Stephen M. Rock, Jean-Claude Latombe,
Brett Kennedy, and Hrand Aghazarian. Free-climbing
with a multi-use robot. In Proc. of ISER, 2004.

[2] Timothy Bretl, Sanjay Lall, Jean-Claude Latombe, and
Stephen M. Rock. Multi-step motion planning for free-
climbing robots. In Proc. of WAFR, pages 59–74, 2005.

[3] Gerhard Brewka, Thomas Eiter, and Miroslaw
Truszczynski. Answer set programming at a glance.
Commun. ACM, 54(12):92–103, 2011.

[4] Ozan Caldiran, Kadir Haspalamutgil, Abdullah Ok, Can
Palaz, Esra Erdem, and Volkan Patoglu. Bridging the gap
between high-level reasoning and low-level control. In
Proc. of LPNMR, 2009.

[5] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer,
and Hans Tompits. A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer-Set
Programming. In Proc. of IJCAI, 2005.

[6] Thomas Eiter, G.Ianni, R.Schindlauer, and H.Tompits.
Effective integration of declarative rules with external
evaluations for Semantic-Web reasoning. In Proc. of
ESWC, 2006.

[7] Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan
Patoglu, and Tansel Uras. Combining high-level causal
reasoning with low-level geometric reasoning and motion
planning for robotic manipulation. In Proc. of ICRA,
2011.

[8] Esra Erdem, Erdi Aker, and Volkan Patoglu. Answer set
programming for collaborative housekeeping robotics:
representation, reasoning, and execution. Intelligent Ser-
vice Robotics, 5:275–291, 2012.

[9] Maria Fox and Derek Long. Pddl2.1: An extension to
pddl for expressing temporal planning domains. J. Artif.
Intell. Res. (JAIR), 20:61–124, 2003.

[10] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver. In Proc. of
LPNMR, pages 260–265, 2007.

[11] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz,
Norman McCain, and Hudson Turner. Nonmonotonic
causal theories. AIJ, 153:2004, 2004.

[12] Fabien Gravot, Stephane Cambon, and Rachid Alami. In
Proc. of ISRR, pages 100–110, 2005.

[13] Kris Hauser and Jean-Claude Latombe. Integrating task
and PRM motion planning: Dealing with many infeasible
motion planning queries. In Proc. of BTAMP, 2009.

[14] Kris Hauser, Timothy Bretl, Jean-Claude Latombe, Ken-
suke Harada, and Brian Wilcox. Motion planning for
legged robots on varied terrain. I. J. Robotic Res, 27
(11-12):1325–1349, 2008.

[15] Andreas Hertle, Christian Dornhege, Thomas Keller, and
Bernhard Nebel. Planning with semantic attachments:
An object-oriented view. In Proc. of ECAI, 2012.

[16] Jörg Hoffmann and Bernhard Nebel. The ff planning
system: Fast plan generation through heuristic search. J.
Artif. Intell. Res., 14:253–302, 2001.

[17] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierar-
chical task and motion planning in the now. In Proc. of
ICRA, pages 1470–1477, 2011.

[18] James J. Kuffner Jr and Steve M. LaValle. RRT-connect:
An efficient approach to single-query path planning. In
Proc. of ICRA, pages 995–1001, 2000.

[19] Vladimir Lifschitz. What is answer set programming? In
Proc. of AAAI, pages 1594–1597, 2008.

[20] Norman McCain and Hudson Turner. Causal theories of
action and change. In Proc. of AAAI/IAAI, 1997.

[21] Erion Plaku. Planning in discrete and continuous spaces:
From ltl tasks to robot motions. In Proc. of TAROS,
pages 331–342, 2012.

[22] Erion Plaku and Gregory D. Hager. Sampling-based
motion and symbolic action planning with geometric and
differential constraints. In Proc. of ICRA, 2010.

[23] Jason Wolfe, Bhaskara Marthi, and Stuart Russell. Com-
bined task and motion planning for mobile manipulation.
In Proc. of ICAPS, 2010.

	Introduction
	Levels of Integration
	Methodology
	Solution Quality
	Planning Efficiency

	Domains and Experimental Setup
	Housekeeping
	Legged Locomotion
	Domain Characteristics and Notable Differences

	Experimental Results
	Time Measurements
	Solution Quality
	Effort Spent in Low-Level Checks

	Discussion and Conclusion

