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Abstract. The evaluation of logic programs with access to external knowledge
sources requires to interleave external computation and model building. Deciding
where and how to stop with one task and proceed with the next is a difficult
problem, and existing approaches have severe scalability limitations in many
real-world application scenarios. We introduce a new approach for organizing
the evaluation of logic programs with external knowledge sources and describe
a configurable framework for dividing the non-ground program into overlapping
possiblysmaller parts called evaluation units. These units will then be processed
by interleaving external evaluations and model building according to an evaluation
and a model graph, and by combining intermediate results. Experiments with
our prototype implementation show a significant improvement of this technique
compared to existing approaches. Interestingly, even for ordinary logic programs
(with no external access), our decomposition approach speeds up existing state of
the art ASP solvers in some cases, showing its potential for wider usage.

1 Introduction

Motivated by a need for knowledge bases to access external sources, extensions of
declarative KR formalisms have been conceived that provide this capability, which
is often realized via an API like interface. In particular, HEX programs [6] extend
nonmonotonic logic programs under the stable model semantics, with the possibility to
bidirectionally access external sources of knowledge and/or computation. E.g., a rule
pointsTo(X,Y) «— &hasHyperlink[X](Y), url(X)

might be used for obtaining pairs of URLs (X,Y"), where X actually links Y on the
Web, and & hasHyperlink is an external predicate construct. Besides constant values, as
above, also relational knowledge (predicate extensions) can flow from external sources to
the logic program at hand and vice versa, and recursion involving external predicates is
allowed under suitable safety conditions. This facilitates a variety of applications which

* This research has been supported by the Austrian Science Fund (FWF) project P20841 and the
Vienna Science and Technology Fund (WWTF) project ICT08-020.



require logic programs to interact with external environments, such as querying RDF
sources using SPARQL [17], bioinformatics [11], combining rules and ontologies [5],
e-government [21], planning [14], and multi-contextual reasoning [2], to mention a few.

Despite the lack of function symbols, an unrestricted use of external atoms leads
to undecidability, as new constants may be introduced, yielding a potentially infinite
Herbrand universe. However, even under suitable restrictions like domain-expansion
safety [7], the efficient evaluation of HEX-programs is challenging, due to aspects like
nonmonotonic atoms and recursive access (e.g., in transitive closure computations).

Advanced in this regard was [7], which fostered an evaluation approach using a
traditional LP system. Roughly, the values of ground external atoms are guessed, model
candidates are computed as answer sets of a rewritten program, and then those discarded
which violate the guess. A generalized notion of Splitting Set [13] was introduced in [7]
for non-ground HEX-programs, which were then split into subprograms with and without
external access, where the former are as large and the latter as small as possible. They are
evaluated with various specific techniques, depending on their structure [7,20]. However,
for real-world applications this approach has severe scalability limitations, as the number
of ground external atoms may be large, and their combination causes a huge number of
model candidates and memory outage without any answer set output.

To remedy this problem, we reconsider model computation and make several contri-
butions, which are summarized as follows.

e We present an evaluation framework for HEX-programs, which allows for flexible
program evaluation. It comprises an evaluation graph, which captures a modular decom-
position and partial evaluation order, and a model graph, which comprises for each node,
sets of input models (which need to be combined) and output models to be passed on.
This structure allows us to realize customized divide-and-conquer evaluation strategies,
using a further generalization of the Splitting Theorem. As the method works on non-
ground programs, value introduction by external calculations and applying optimization
techniques based on domain splitting [4] are feasible.

e The nodes in the evaluation graph are evaluation units (program sub-modules), which
noticeably — and different from other decomposition approaches — may overlap and be
non-maximal resp. minimal. In particular, constraint sharing can prune irrelevant partial
models and candidates earlier than in previous approaches.

e A prototype of the evaluation framework has been implemented, which is generic
and can be instantiated with different ASP solvers (in our case, with dlv and clasp). It
features also model streaming, i.e., computation one by one. In combination with early
model pruning, this can considerably reduce memory consumption and avoid termination
without solution output in a larger number of settings.

o In contrast to the previous approach, the new one allows for generating parallelizable
evaluation plans. Applying it to ordinary programs (without external functions) allows
us to do parallel solving with a solver software that does not have parallel computing
capabilities itself (“parallelize from outside”).

In order to assess the new approach, we conducted a series of experiments which clearly
demonstrate its usefulness. The new implementation outperforms the current divhex
system significantly, using (sometimes exponentially) less memory and running much
faster. Interestingly, also on some ordinary test programs it compared well to state of the



art ASP solvers: apart from some overhead on fast solved instances, our decomposition
approach showed a speed up on top of div and clasp. The results indicate a potential for
widening the optimization techniques of ordinary logic programs, and possibly also other
formalisms like multi-context systems. Due to space limitation, only selected experiments
are shown and proofs omitted. The full experimental outcome with benchmark instances
is available at http://www.kr.tuwien.ac.at/research/systems/dlvhex/experiments.html.

2 Preliminaries

HEX programs [7] are built on mutually disjoint sets C, X, and G of constant, variable,
and external predicate names, respectively. By default, the elements of X’ (resp., C)
start with a letter in upper (resp., lower) case; elements of G are prefixed with ‘ & ’.
Constant names serve both as individual and predicate names. Noticeably, C may be
infinite. Terms are elements of C U X. A (higher-order) atom is of form Yy (Y1, ..., Y,),
where Yy, ..., Y, are terms; n > 0 is its arity. The atom is ordinary, if Yy € C. In this
paper, we assume that all atoms are ordinary, i.e., of the form p(Y7,...,Y},). An external
atom is of the form & g[X](Y), where X =X1,..., X, and Y =Y1,...,Y,, are lists
of terms (called input and output list, resp.), and & g is an external predicate name.
HEX-programs (or simply programs) are finite sets of rules r of the form

ar V- Vag < B1,...,0p,n0t Buy1,...,not By, ()

where m, k > 0, all o; are atoms, all 3; are atoms or external atoms, and “not” is
negation as failure (or default negation). If k = 0, r is a constraint, otherwise a non-
constraint. If r is variable-free, k = 1, and m = 0, it is a fact.

We call H(r) ={au,...,ax} the head of r and B(r) = B (r) U B~ (r) the body of
r, where BY(r)={01,...,8n} and B~ (r) = {Bn11,- - -, Bm } are the (sets of) positive
and negative body atoms, respectively. We write a ~ b when two atoms a and b unify.

Semantics. Answer sets of ordinary programs [10] are extended to HEX-programs P,
using the FLP reduct [8]. The Herbrand base HB p of P, is the set of all ground instances
of atoms and external atoms occurring in P, obtained by a variable substitution over C.
The grounding of a rule 7, grnd(r), and of P, grnd(P) = |J,.c p grnd(r), is analogous.

An interpretation relative to P is any subset I C HBp containing only atoms.
Satisfaction is defined as follows: I is a model of (i) an atom a € HB p respectively
(ii) a ground external atom a = &g[x](y), denoted I = a, iff (i) a € I respectively (ii)
fag(I,x,y) =1, where fg,: 2B x C"+t™ — {0,1} is a (fixed) function associated
with &g, called oracle function; intuitively, fgq tells whether y is in the output computed
by the external source &g on input x.

For a ground rule r, (i) I = H(r) iff I |=a for some a € H(r), (ii) I = B(r) iff
I'=aforeveryae BT (r)and I [~aforall a€ B~ (r), and (iii) I = iff I =H(r) or
I}~ B(r). Then, I is a model of P, denoted I |= P, iff I |=r for all r € grnd(P).

The FLP-reduct [8] of P w.r.t. an interpretation I, denoted fPI ,isthe setof all r €
grnd(P) such that I = B(r). Finally, I C HBp is an answer set of P, iff I is a subset-
minimal model of fP!. By AS(P) we denote the set of all answer sets of P.

A ground external atom q is called monotonic, iff I |= a implies I’ = a for all
interpretations I, I’ such that 7 C I’. A non-ground external atom is monotonic, if all its



ground instances are. For practical concerns, we assume that each input argument X; of
an external atom a = & g[X](Y), has a type label predicate or constant, which is unique
for & g. We then assume that VI, I’, x,y. feq(I,%X,y) = faq(I',x,y) holds for all I and
I’ which coincide on all the extensions of predicates x; such that X; is of type predicate;
hence, f«, depends only on the input of a given by predicate extensions and individuals.

3 Formal Framework

The former HEX evaluation algorithm [7] is based on a dependency graph between
non-ground atoms; depending on the above, piecewise evaluation is carried out on
appropriate selections of sets of rules (the ‘bottoms’ of a program). In contrast with
that, we base evaluation on dependency between, possibly overlapping, subsets of rules
of the program at hand. We call such groups of rules evaluation units (in short: units);
with respect to the former approach, units are not necessarily maximal. Instead, when
forming units we require that their partial models (i.e., atoms in heads of their rules) do
not interfere with those of other units. This allows for independence, efficient storage,
and easy composition of partial models of distinct units.

Creating an evaluation graph (a graph of units) for a given HEX program is done by
an evaluation heuristics. Note that several possible evaluation graphs exist with highly
varying evaluation performance. Here, we concentrate on the evaluation framework,
leaving the design of optimal heuristics subject to future work. In Section 5 we informally
describe the old heuristics HI and a simple new heuristics H2 used in the experiments.

For illustrating our contribution, we make use of the following running example.

Example 1. Consider the HEX program P with facts choose(a, ¢, d) and choose(b, e, f):
r1: plan(a) V plan(b) «—

Tro: need(p,C) «— &cost[plan](C')

r3: use(X) V use(Y) « plan(P), choose(P,X,Y)
IoF need(u,C) «— &cost[use](C)

cs: — need(_,money)

External atom &cost has one predicate type input: for any interpretation / and some
constant (predicate) ¢, facost(I,q,C) = 1iff C = money and I N {q(a),q(f)} # 0,
or C = time and I N {q(b), ¢(c), q(d),q(e)} # 0; otherwise 0.

The program P informally expresses to guess a plan and a sub-plan use; resource us-
age is evaluated using &cost, solutions that require money are forbidden by a constraint,
choosing a or f in 71 or rg requires money, other choices require time. The answer set
of P is {plan(b), use(e), need(p, time), need(u, time)} (omitting facts). O

We next introduce a new notion of dependencies in HEX programs.

Dependency Information. To account for dependencies between heads and bodies of
rules is a common approach for devising an operational semantics of ordinary logic
programs, as done e.g. by stratification and its refinements like local [18] or modular
stratification [19], or by splitting sets [13]. New types of dependencies were considered
in [7], as in HEX programs, head-body dependencies are not the only possible source of
predicate interaction. In contrast to the traditional notion of dependency that in essence



hinges on propositional programs, we consider relationships between non-ground atoms.
We lift the definition of atom dependency in [7] to dependencies among rules.

Definition 1 (Rule dependencies). Let P be a program with rules r, s € P. We denote
by r— s (resp. r—,,s) that r depends positively (resp. negatively) on s whenever:
(i) a € BY(r), b€ H(s), and a ~ b, then r—,s;
(ii) a € B~ (r), b€ H(s), and a ~ b, then r—s;
(iii) a € H(r), b € H(s), and a ~ b, then both r— s and s—pr;
(iv) a € B(r) is an external atom of form &g[X]|(Y) where X = X1,...,X,, the
input X; = pis of type predicate, and b € H (s) is an atom of form p(Z), then
- 71—, if &g is monotonic and a € BT (r), and
— r—,S otherwise.

Example 2 (ctd.). According to Definition 1, due to (i) we have dependencies 73— 71,
¢5—pT2, and cs—,73; and due to (iv) we have dependencies 12—y and 14— prs. O

We generically say that r depends on s (r—s), if either r— s or r—s.

Evaluation Graph. Using the above notion of rule dependencies, we define the structure
of an evaluation graph consisting of evaluation units depending on one another.

We handle constraints separately from non-constraints. Constraints cannot infer
additional atoms, hence they can be shared between evaluation units in many cases,
while sharing non-constraints could violate the modularity of partial models. In the
former evaluation algorithm, a constraint could only kill answer sets once all its depen-
dencies were fulfilled. The new algorithm increases evaluation efficiency by duplicating
nonground constraints, allowing them to kill models earlier.

In the following, an evaluation unit is any nonempty subset of the rules of a program.
An evaluation unit graph is a directed graph where each vertex is a unit. Let G =
(U, E) be an evaluation unit graph of program P, v € U, and r € v. We say that the
dependencies of r are covered by G at unit v iff for all rules s of P, if r—s holds
for s € w, w € U, and w # v, then there is an edge from v to w in G.

Definition 2 (Evaluation graph). An evaluation graph £ = (V, E) of a program P
is an acyclic evaluation unit graph such that (a) | JV = P, (b) for eachr € P and
eachv € V with r € v, negative dependencies of v are covered by £ at v, and (c) for
each r € P its positive dependencies are covered by £ at every (resp., some) unitv € V.
with r € v if r is a non-constraint (resp., constraint).

Note that by acyclicity of £, mutually dependent rules must be in the same unit. Further-
more, a unit can have in its rule heads only atoms which do not match atoms derivable
by other units, due to dependencies between rules deriving unifiable heads.

Let £ = (V, E) be an evaluation graph. We write v < w iff there exists a path from v

towin &, and v < wiffeitherv < worv = w.Foraunitv € V,letv< = Uwer<ww

be the set of rules in ‘preceding’ units on which v depends, and let v< = v< U {v}.
Furthermore, for each unit v € V', we define predsz(v) = {w € V| (v,w) € E}.

Example 3 (ctd.). We focus on two specific evaluation graphs of program P. Graph &; in
Fig. la corresponds to the former HEX evaluation method. Intuitively, w; guesses inputs
for us, which then evaluates rules with external atoms; finally us checks constraints.



b, m1 = {plan(a), use(c)}
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cs: — need(_,money). choose(P,XY). m5oﬁ4{need(p,time)} m Oj{use(f)}
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ra: need(u,C) «—& costuse](C). m121»5711 {need(p,time),use(e)}

st need(money). wn | maa" {need(p,time) use(f)} 1

derives: need(u,C') mas 2 {need(u,time)}

(c) Evaluation graph & (d) Model graph M2

Fig. 1: Old vs New strategy: evaluation and model graphs

Another (possibly more efficient) evaluation graph is & in Fig. 1c: guesses of r;
and rg are split into separate units %1 and ug, reducing redundancy of external atom eval-
uation. The constraint c5 is shared between uo and u4, and it prunes models in us, again
reducing redundancy. Note that units with multiple inputs and constraint duplication do
not exist in the former HEX algorithm. a

Model Graph. We now define the model graph, which interrelates models at evalu-
ation units. It is the foundation of our model building algorithm. In the following, a
model m is a set of ground atoms. Each model belongs to a specific unit unit(m),
and has a type type(m) which is either input (1) or output (0). Given a set of mod-
els M and a unit u, we denote by imods s (u) = {m € M | unit(m) = u, type(m) =1}
and omods pr(u) = {m € M | unit(m) = u, type(m)= 0} the sets of input and output



Algorithm 1: BUILDMODELGRAPH (£ = (V, E): evaluation graph)
Output: M = (M, F, unit, type): model graph
M:=0F:=0U:=V
while U # () do

choose u € U s.t. predsg(u) NU =

let preds g (u) = {u1,...,ux}and M’ ;=0

for m1 € omodsar(u1),...,mi € omodsar(ux) do
(a) if m := mi < -+ XMy is defined then
) M’ := EVALUATEUNIT(u, m)

set unit(m) := w and type(m) :=1

set unit(m’) := wand type(m’) := o forallm’ € M’
F:=FU{m' m)|m e M}U{(mm)|1<i<k}
M :=MuUM U{m}

| U:=U\{u}
return (M, F, unit, type)

models of u, resp. Intuitively, when computing answer sets of a program P under an
evaluation graph &, each unit v might have a number of input models: each input model
determines a particular set of input assertions for unit «, and is built in turn by merging a
number of output models m;, one per each unit u; € preds ;(u). Given an input model m
for u, the evaluation of u might ‘produce’ a number of output models depending on m.

Definition 3 (Model graph). Given an evaluation graph E=(U,E) for a program P,
a model graph M=(M, F, unit, type) is a labelled directed acyclic graph, where
each vertex meM is a model, F CM xM, and unit: M— U and type: M— {1,0}
are vertex labelling functions. F' consists of the following edges for each model m:
(a) (m,m’) with meomods(u), m'€imods s (u) for some uelU s.t. preds g (u)#0;
and (b) (m,m1), ..., (m,my) if m€imods s (u), u€U, and {uy, ..., u t=preds g (u),
such that m;=f(m, u;)€omods p; (u;), 1<i<k is some (unique) output model of u,;.

Note that the empty graph is a model graph, and that evaluation units may have no
models in the model graph. This is by intent, as our model building algorithm progresses
from an empty model graph to one with models at each unit (iff the program has an
answer set). Given a model m, we denote by m™ the expanded model of m, which is the
union of m and all output models on which m transitively depends. Note, that given m

at unit u, m™ is a union of one output model from each unit in us.

Example 4 (ctd.). In Mo, some expanded models are m3 = {need(p,time), plan(b)},
mi, = {use(f), plan(b)}, and miy = {need(p,time), use(f), plan(b)}. |

4 Evaluation

Roughly speaking, answer sets of a program can be built by first obtaining an evaluation
graph, and then computing a model graph accordingly. We next demonstrate model build-
ing on our example, informally discussing the main operations BUILDMODELGRAPH,



Algorithm 2: EVALUATEUNIT (u: evaluation unit, mm: input model at u)

Qutput: output models at u

// determine external atoms that get input only from m

Ain :={&g[x|(y) | r €vandz N (U, c, H(r")) =0}

Maue = {dag(X,y) | &g[x](y) € Ain and feq(m,x,y) = 1} // get replacement facts
u’ := u with external atoms A;, replaced by their corresponding auxiliaries

choose ES € {PLAIN, WELLF, GNC} according to the structure of u’

return ES(u';m Umgau,)  // return set of models for v’ w.r.t. m and m g, using ES

model join ‘ >d’, and EVALUATEUNIT, which are later defined formally. To simplify our
algorithm, we assume empty dummy input models at units without predecessors.

Example 5 (ctd.). Fig. 1b and 1d show model graphs M; and M resulting from
the evaluation of & and &, resp. On &, unit u; is evaluated first, yielding output
models my, ..., my4 containing guesses over plan and use. These models are also input
models for us; for each of them we first evaluate the external atoms &cost[plan](C)
and &cost[use](C') and then evaluate {rs, r4} using an external solver; we then obtain
output models my, . . . , m12 which are also input models for uz = {¢5}. Evaluation of ug
yields a model m ;7 for input model my5, and mi; = {need(p, time), need(u, time),
plan(b), use(e)} is the only answer set of P. For evaluation graph &;, we start with u;,
which yields output models m; and ms. Then we process uy and ug in arbitrary order
(or even in parallel). One external atom will be evaluated for each input model of us.
Then, we evaluate {rs, ¢5}, which yields output model m for input m4, and no model
for mgs. For each input model of u3 two models are generated by r3. Input models for w4
are built by joining output models from us and ug (cf. Ex. 7). Finally, u4 evaluates one
external atom per input model and then gets the models m 4 for input m;2 and no model
for input m3 for {ry, c5}. We again get a single answer set m, of P. ad

Model Joining. Input models of a unit « are built by combining one output model
m,; for each unit u; on which u depends. Only combinations with common ancestry in
the model graph are allowed. To formalize this condition, we introduce the following
notion. Unit w is a common ancestor unit (cau) of v in an evaluation graph £ = (V, E)
iff v, w € V, v # w, and there exist distinct paths p1, p2 from v to w in F s.t. p; and po
overlap only in vertices v and w. We denote by caus(v) the set of all caus of unit v.

Example 6. In an evaluation graph sketched by dependencies a—b—c—d—e, a—-c,
and a—d, we have that caus(a) = {c, d} and no other unit besides a has caus. O

We next formally define the join operator ‘ <’ on models.

Definition 4. Let M = (M, F) be a model graph for an evaluation graph £ = (V, E)
of a program P, and let u € V be a unit. Let uy, . .., uy, be all the units u; on which u
depends, and let m; € omods s (u;), 1 < i < k. Then the joinm = mq > -+ - db}Imy =
Ui <i<k mi is defined iff for each v’ € caus(u) there exists exactly one model m’ €
omods pr (u') reachable (in M) from some model m;, 1 < i < k.

Example 7 (ctd.). Building input models for u4 in Figure 1d requires a join operation:
from all pairs of output models at us and ug, only those with a common ancestor at u;



yield a valid input model: u4 has two input models ms > m1¢ and ms <1 m17; they have
ms as a common ancestor at u;. For other combinations, the join is undefined. O

Evaluation Algorithm. Alg. 1 builds our model graph: U contains units for which
models still have to be calculated; in each iteration step (a) determines all input models m
for unit u, step (b) calculates output models originating in m.

EVALUATEUNIT (Alg. 2) evaluates unit u; it creates output models for given input
model m. Given a possibly non-ground external atom &g[x](y), we denote by the
ordinary atom d4(X,y) its corresponding replacement atom. These replacement atoms
are instrumental for evaluating rules containing external atoms; we apply the approach
of “HEX component evaluation” introduced in [20]: intuitively, we evaluate external
atom functions wrt. a given input model m, augment m with replacement facts for
inputs where fg, evaluates to 1, replace external atoms by corresponding replacement
atoms in all rule bodies, and then evaluate the resulting program R wrt. augmented
input model m’. Depending on the structure of R, we can choose between different
evaluation strategies as described in [20]; PLAIN: if R contains no external atoms, we
create output models AS(R Um’) by an external solver; WELLF: if external atoms in R
are monotonic, and none is contained in a negative dependency cycle, we use a fixpoint
algorithm; and GNC: in all other cases, we use a guess-and-check algorithm.

Soundness and Completeness. Because of constraint duplication, the evaluation graph
does not partition the input program, and the customary notion of splitting set does
not apply to evaluation units. We define a generalized bottom of a program, that is a
way to split a program into two parts with a nonempty intersection containing certain
constraints. We prove that generalized bottoms behave similar as bottoms gb4 created
by global splitting sets and EVAL [7], to which we only refer here.

Definition 5. Given a HEX program P, a generalized bottom P’ C P is a subset of P
such that there exists a global splitting set A and the set C = P’ \ gba(P) is a set of
constraints with B~ (C') C A.

Definition 6 (as in [7]). For an interpretation I and a program @), the global residual,
gres(Q, I), is the program obtained from Q as follows: (i) add all the atoms in I as facts,
and (ii) for each “resolved” external atom a = &g[X|(Y) occurring in some rule of Q,
replace a with a fresh ordinary atom dgg(c) for each tuple ¢ output by EVAL(&g, Q, I).

Theorem 1. Let P be a domain-expansion safe HEX program over atoms U, and let
P’ be a generalized bottom of P with global splitting set A and constraints C. Then
M\D € AS(P) iff M € AS(gres(P",I))withI € AS(P')and P = (P\P")UC’,
where D is the set of additional atoms in gres(P") with predicate name of form dg,,
and C' = {c € C | BT (c) N (U \ A) # 0} is the set of constraints in P" with body
atoms unifying with atoms in A as well as with atoms in U \ A.

Intuitively, this is a relaxation of the previous nonground HEX splitting theorem regarding
constraints: those matching atoms derived in the splitting set as well as in the residual
program may be added to P’ iff they are not removed from the residual program. The
benefit of sharing such constraints is a reduced set of models AS(P).

The following lemma applies the above splitting theorem to the evaluation graph and
the model graph, and is instrumental for showing correctness of the algorithm.



Lemma 1. Given an evaluation graph & = (Vg, Eg) of a HEX program P, and an
evaluation unit u € Vg, it holds that (i) the subprogram u~ is a generalized bottom of
the subprogram u=; furthermore if for each predecessor u' € preds ;(u) we have that
models {m'" | m’ € omods (')} are the models of w'S, it holds that (ii) step (a) of
BUILDMODELGRAPH creates the models of bottom u~ as imods s (u), and (iii) step
(b) builds models omods pr (u) of u s.t. {m™* | m € omods s (u)} are the models of u=.

Using this lemma, we can inductively prove that each iteration of BUILDMODELGRAPH
chooses a unit « without models, creates input models and then output models at u, such
that all expanded models at unit u are answer sets of subprogram «=. In this manner, the
model graph is extended until no longer possible. We have the following result.

Theorem 2. Given an evaluation graph € = (V, E) of a HEX program P, BUILD-
MODELGRAPH returns the model graph M = (M, F') such that {my > --- pxxmy, |
m; € omods pr(u;), u; €V} = AS(P).

5 Implementation and Experiments

The presented framework has been implemented to become the next version of the divhex
solver: divhex 2.0 (http://www.kr.tuwien.ac.at/research/systems/dlvhex/). The current
implementation supports div (http://www.dlvsystem.com/) and (for a non-disjunctive frag-
ment of HEX) clasp+gringo (http://potassco.sourceforge.net/) as back-end ASP solvers.

In addition to the framework described above, an online model calculation algorithm
has been implemented that can easily be extended to add query support. So far, the
evaluation strategy PLAIN has been implemented; implementing other strategies just
requires adapting legacy code to new C++ data structures. Two evaluation heuristics are
implemented: the former divhex evaluation heuristics HI and a new heuristics H2 (cf.
Ex. 3). HI was ported for comparing divhex 1.x to 2.x; it splits a given program into
strongly connected components and external components (which are as small as possible).
The new H2 places rules into units as follows: (i) combine rules r1, 7o whenever 1 —s
and ro—s and there is no rule ¢ s.t. exactly one of r1, 72 depends on ¢; (ii) combine
rules r1, 72 whenever s—r; and s—9 and there is no rule ¢ s.t. ¢ depends on exactly
one of r1, ro; but (iii) never combine rules 7, s if 7 contains external atoms and r—s.
Intuitively, H2 builds an evaluation graph that puts all rules with external atoms and
their successors into one unit, while separating rules creating input for distinct external
atoms. This avoids redundant computation and joining unrelated models.

Experimental Setup and Benchmarks. A series of 6 concurrent tests were run on a
Linux machine with two quad-core Intel Xeon 3GHz CPUs and 32GB RAM. The system
resources were limited to a maximum of 3GB memory usage and 600 secs execution
time for each run. The computation task for all experiments was to compute all answer
sets of two kinds of benchmark instances:

e MCS. The first kind of benchmark instances, motivating this research, are HEX pro-
grams capturing multi-context systems (MCS)—a formalism for interlinking distributed
knowledge sources with possibly nonmonotonic “bridge rules” (see [2]). Each instance
consists of 5-10 guessed atoms of input and output interpretations for each of 7-9
knowledge sources, which are realized by external atoms in constraints. Most guesses
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Fig.2: REVSEL 1 (P = 20), out-of-memory for 7' > 12

are eliminated by these constraints, the remaining guesses are linked by HEX rules
representing bridge rules of the modeled system. These benchmarks come in 14 different
flavors (bridge rule topologies and sizes), each with 10 randomized single instances.
Instances have an average of 400 models, with values ranging from 4 to ~20,000 models.
e REVIEWER SELECTION (REVSEL). The second class of benchmark instances encode
the selection of reviewers for conference papers—taking conflicts into account, some
of which are encoded by external atoms. For these instances, we vary the number T’
of conference tracks and the number P of papers per track. The number of reviewers
available for each track equals P and there is one reviewer assigned to all tracks (estab-
lishing a dependency between conference track assignments). Each paper must have 2
reviews and no reviewer gets more than 2 papers assigned. We generated conflicts such
that we limit the number of overall models, as well as the number of candidate models
per conference track, before checking conflicts modeled via external atoms.

We consider two special classes of reviewer selection. In REVSEL 1, we first com-
pared the old and the new evaluation approach for a very specific program structure, as
well as the old and new implementation with the ported (old) evaluation heuristics HI.
For that we used P = 20 papers per conference track and varied the number of tracks
T'. External atoms and conflicts were configured such that all conference tracks have
two solutions before evaluating constraints with external atoms, and one overall model
after program evaluation. The REVSEL 2 experiment involved no external atoms: we
used T' = 5 conference tracks and varied the number of papers per track. Conflicts are
generated such that there are 1-2 solutions per conference track, with a shared reviewer
such that each program () has 9 answer sets in total.

Results. It turned out that on the considered problems, the new evaluation approach
outperforms the old one significantly, using less memory (sometimes exponentially less).
For the MCS benchmark instances, the old approach had 34 timeouts and 83 memory
outages; thus only 16% of all instances triggered some output. The average time and
memory usage for successful termination was 86 seconds and 623MB, resp. Both values



have a high standard deviation. In contrast, the new approach successfully calculated all
models for all instances with an average solve time of 3 seconds and an average memory
usage of 32MB, both with a small standard deviation. This big improvement makes
usage of HEX programs in this problem domain feasible for the first time. Note that this
problem domain was originally not generated for benchmarking HEX programs, so it is
not specifically geared towards showing beneficial effect of our new approach.

Results for REVSEL 1 are shown in Fig. 2: an exponential increase of runtime is
visible in the old approach, compared to linear time growth of the new one. Memory
usage behaves similarly. In general, increasing I’ causes timeouts, yet bigger T"s exhaust
memory. Under H1, divhex 2 acts better, which may be explained with technical improve-
ments. As a surprising result of REVSEL 2, our divide-and-conquer approach performs
better than solving ) directly with native solvers. This has been observed for both dlv
and clasp as a backend. Our prototype incurs a small overhead for decomposing the
program: small instances with running time < 2 sec are slower than native solvers, while
big instances using H2 were solved faster and with significantly less memory usage.

6 Discussion and Conclusion

We illustrated a new general technique for evaluating nonmonotonic logic programs
with external sources of computation. Our work is clearly related to work on program
modularity under stable model semantics, including, e.g., the seminal paper [13] on
splitting sets, and [15, 12], which lifted them to modular programs with choice rules and
disjunctive rules and allow for “symmetric splitting.” An important difference is that
our decomposition approach works for nonground programs and explicitly considers the
possibility that modules overlap. It is tailored to efficient evaluation of arbitrary programs,
rather than to facilitate module-style logic programming with declarative specifications.
In this regard, it is in line with previous work on HEX program evaluation [7] and
decomposition techniques for efficient grounding of ordinary programs [3].

The work presented here can be furthered in different directions. As for the prototype
reasoner, a rather straightforward extension is to support brave and cautious reasoning
on top of HEX programs, while incorporating constructs like aggregates or preference
constraints requires more care and efforts. Regarding program evaluation, our general
evaluation framework provides a basis for further optimizations that, as indicated by
our experiments, are also of interest for ordinary logic programs. Indeed, the generic
notions of evaluation unit, evaluation plan and model graph allow to specialize and
improve our framework in different respects: first, evaluation units (which may contain
duplicated constraints), can be chosen according to a proper estimate of the number of
answer sets (the fewer, the better); second, evaluation plans can be chosen by ad-hoc
optimization modules, which may give preference to time, space, or parallelization
requirements, or to a combination of the three. Furthermore, our framework is ready to a
form of coarse-grained distributed computation at the level of evaluation units (in the
style of [16]): evaluation graphs naturally encode parallel evaluation plans. Independent
units can in fact be evaluated in parallel, while our ‘model streaming’ architecture lends
itself to pipelined evaluation of subsequent modules. Improving reasoning performance
by decomposition has been investigated in [1], however, only wrt. monotonic logics.



As a last remark on possible optimizations, we observe that the data flow (constituted
by intermediate answer sets) between evaluation units can be optimized using proper
notions of model projection, such as in [9]. Model projections would tailor input data
of evaluation units to necessary parts of intermediate answer sets; however, given that
different units might need different parts of the same intermediate input answer set, a
space-saving efficient projection technique is not straightforward.
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