

Methods and Algorithms for Managing Inconsistency in Multi-Context Systems

Wiener Wissenschafts-, Forschungs- und Technologiefonds

Principles of Knowledge Representation and Reasoning — Doctoral Consortium Toronto, Canada, 2010

Peter Schüller Faculty Mentors: Thomas Eiter and Michael Fink

Vienna University of Technology Institut of Information Systems Knowledge Based Systems Group

Multi-Context Systems: Subject of Investigation

- MCSs provide a formalism for interlinking knowledge bases.
- What is a multi-context system?

A collection of contexts:

 $M = (C_1, \ldots, C_n)$

• What is a context C_i ?

 $C_i = (L_i,$ a logic

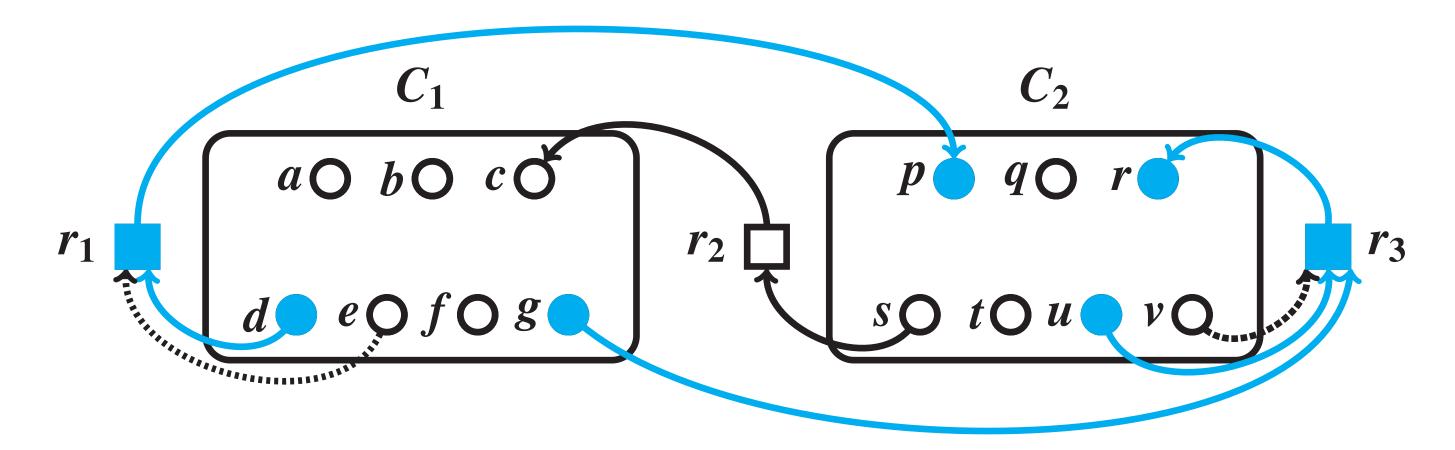
Inconsistency Management Approach

No equilibrium = no useful information!

- \Rightarrow Analyze inconsistency to gain information
- 1. Explain inconsistency in a given MCS
- 2. Reason about explanations \Rightarrow find causes and repairs
- 3. (Semi-)automatically repair the MCS

- the context's knowledge base kb_i , a set of bridge rules br_i)
- What is a logic L_i ?
 - $L = (KB_L,$ set of well-formed knowledge bases set of possible belief sets BS_L , ACC_L) acceptability function $KB_L \rightarrow 2^{BS_L}$
 - Given a knowledge base, ACC_L answers:

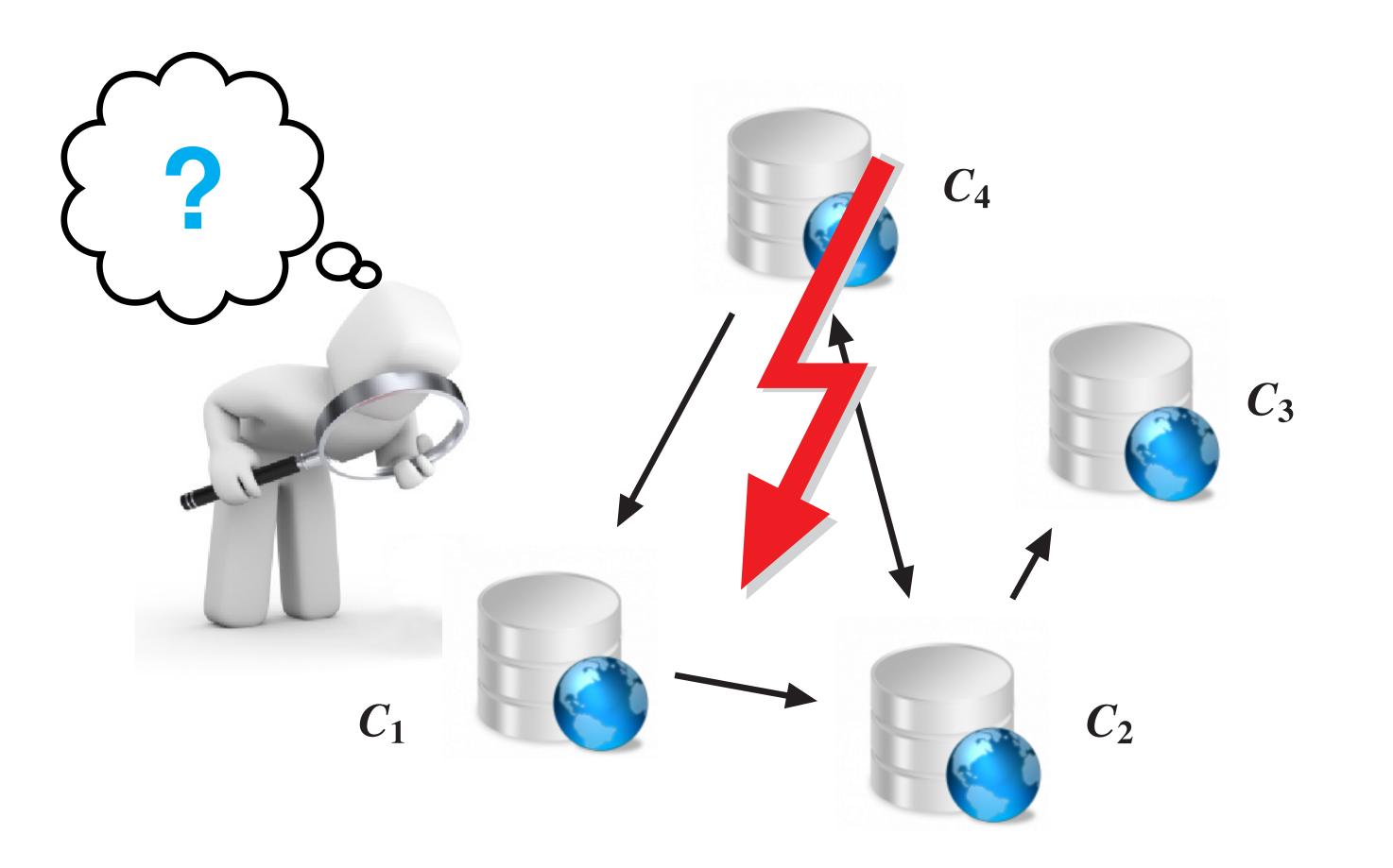
Which belief sets are accepted?


- \Rightarrow captures many (nonmonotonic) formalisms
- \Rightarrow allows multiple extensions (e.g., Reiter's default logic)
- What is a bridge rule?

 $(k:s) \leftarrow (c_1:p_1), \ldots, (c_j:p_j),$

not $(c_{i+1}: p_{i+1}), \ldots,$ not $(c_m: p_m).$

- How about semantics?
 - Equilibrium = stable belief state $S = (S_1, \ldots, S_n)$, s.t.
- H_i is calculated from bridge rules applicable wrt. S ▶ each context accepts S_i using $kb_i \cup H_i$: $S_i \in ACC_i(kb_i \cup H_i)$


MCS Example: Semantics

 \Rightarrow Obtain useful information in the presence of inconsistency

Basic situation:

- Most inconsistencies arise due to unexpected interactions Reasons: * systems are often connected by ad hoc links * large and complicated contexts and systems
- We can identify reasons for inconsistency by bridge rules because bridge rules model the links between contexts Disregarded: debugging context internals (use traditional methods) \Rightarrow Assumptions: context is consistent without input

- $r_1 = (2:p) \leftarrow (1:d), not(1:e).$ $r_2 = (1:c) \leftarrow (2:s).$ $r_3 = (2:r) \leftarrow (1:g), (2:u), not(2:v).$
- Does C_1 accept $\{d, g\}$ without inputs? \Rightarrow check if $\{d,g\} \in ACC_1(kb_1)$
- Does C_2 accept $\{u\}$ with inputs $\{p, r\}$? \Rightarrow check if $\{u\} \in ACC_2(kb_2 \cup \{p, r\})$
- ▶ If both is true,

 $(\{d,g\},\{u\})$ is an equilibrium of M!

MCS Example: Inconsistency

Scenario: "Mentor C_1 and students C_2 and C_3 write a paper p" $kb_1 = \{Intuitive \square Readable,\}$

Progress to Date

\checkmark Framework for explaining inconsistency:

"Which rules must be deactivated/must fire, to gain consistency?" Diagnosis: $(D_1, D_2), D_1, D_2 \subseteq br_M$ s.t. $M[br_M \setminus D_1 \cup heads(D_2)]$ is consistent.

e.g. $(\{r_1\}, \emptyset)$, or $(\emptyset, \{r_3\})$ in student/mentor example

"Which rules must be present/not fire, to produce inconsistency?" Inconsistency Explanation: $(E_1, E_2), E_1, E_2 \subseteq br_M$ s.t. for all (R_1, R_2) where $E_1 \subseteq R_1 \subseteq br_M$ and $R_2 \subseteq br_M \setminus E_2$, $M[R_1 \cup heads(R_2)]$ is inconsistent.

e.g. $(\{r_1, r_3\}, \{r_1, r_3\})$ in student/mentor example

- ✓ Experimental prototype using dlvhex (ASP extension with external atoms)
- \checkmark Complexity analysis
- \checkmark Modularity properties

 $\exists contains.theorems \sqsubseteq ManyTheorems \}$ $kb_2 = \{theorems(X) \leftarrow writeTheorems(X).\}$ $kb_3 = \{intuition(X) \leftarrow makeIntuitive(X).\}$

Bridge rules:

$$\begin{array}{ll} r_1 = (1: contains(p, theorems)) \leftarrow (2: theorems(p)). \\ r_2 = (1: Intuitive(p)) & \leftarrow (3: intuition(p)). \\ r_3 = (2: writeTheorems(p)) & \leftarrow not \ (1: ManyTheorems(p)). \\ r_4 = (3: makeIntuitive(p)) & \leftarrow (1: ManyTheorems(p)). \end{array}$$

This MCS has no equilibrium! — why?

C ₁ accepts:	Effect:
ManyTheorems(p)	C_2 does not write theorems C_1 does not accept ManyTheorems(p)
-ManyTheorems(p)	C_2 writes theorems C_1 accepts <i>ManyTheorems</i> (p)

\Rightarrow no stable belief state

This work was supported by the Vienna Science and Technology Fund (WWTF) under grant ICT 08-020.

Current and Future Work

- Partially known MCSs and inconsistency
- (Trust/Policy Contexts will usually hide certificates and/or rules)
- Distributed calculation of inconsistency explanations
- Reasoning about explanations and repair of inconsistencies
- Query answering in the presence of inconsistency (related to paraconsistency, belief revision, belief merging)
- Distributed algorithms for inconsistency management

References

- ► Giunchiglia, F., and Serafini, L. Multilanguage hierarchical logics, or: How we can do without modal logics. *Artificial Intelligence* 65(1):29–70. 1994.
- Gerhard Brewka and Thomas Eiter. Equilibria in heterogeneous nonmonotonic multi-context systems. In AAAI, pg 385–390, 2007.
- ► Thomas Eiter, Michael Fink, Peter Schüller, and Antonius Weinzierl. Finding explanations of inconsistency in nonmonotonic multi-context systems. In KR, 2010.