

Finding Explanations of Inconsistency in Multi-Context Systems

Thomas Eiter Michael Fink Peter Schüller Antonius Weinzierl

Principles of Knowledge Representation and Reasoning

May 10, 2010

Wiener Wissenschafts-, Forschungs- und Technologiefonds

Vienna University of Technology Institute for Information Systems Knowledge-Based Systems Group

Supported by the Vienna Science and Technology Fund (WWTF) under grant ICT08-020

Interlinking and Integrating Knowledge

- Focus on decentralized systems
- Heterogeneous and nonmonotonic system parts, here called contexts (databases, ontologies, answer set programs,...)
- Fixed (small) amount of contexts
- Fixed topology
- Example: companies linking their business logics
- ⇒ unifying formalism: Multi-Context Systems

Interlinking and Integrating Knowledge

- Focus on decentralized systems
- Heterogeneous and nonmonotonic system parts, here called contexts (databases, ontologies, answer set programs,...)
- Fixed (small) amount of contexts
- Fixed topology
- Example: companies linking their business logics
- ⇒ unifying formalism: Multi-Context Systems
- Inconsistencies arise easily, even if all contexts are consistent:
 - Unforseen effects of information exchange
 - Complexity of application and data
- We seek to understand and give reasons for inconsistencies.

- MCSs introduced by [Giunchiglia & Serafini, 1994]:
 - represent inter-contextual information flow
 - express reasoning w.r.t. contextual information
 - allow decentralized, pointwise information exchange
- Framework extended for integrating heterogeneous non-monotonic logics [Brewka & Eiter, 2007].

Syntax and Semantics of MCSs (1)

- What is a multi-context system?
 - a collection $M = (C_1, \ldots, C_n)$ of contexts
- What is a context?
 - $\triangleright \quad C_i = (L_i, kb_i, br_i)$
 - ► *L_i*: a logic
 - *kb_i*: the context's knowledge base
 - *br_i*: a set of bridge rules

Syntax and Semantics of MCSs (1)

- What is a multi-context system?
 - a collection $M = (C_1, \ldots, C_n)$ of contexts
- What is a context?
 - $\triangleright \quad C_i = (L_i, kb_i, br_i)$
 - L_i: a logic
 - *kb_i*: the context's knowledge base
 - *br_i*: a set of bridge rules
- What is a logic?
 - $\blacktriangleright L = (\mathbf{KB}_L, \mathbf{BS}_L, \mathbf{ACC}_L)$
 - ► **KB**_L: set of well-formed knowledge bases
 - ► **BS**_L: is the set of possible belief sets
 - ► ACC_L : KB_L → 2^{BS_L}: acceptability function: Which belief sets are accepted by a knowledge base?

Syntax and Semantics of MCSs (2)

$$M = (C_1, \ldots, C_n)$$
 $C_i = (L_i, kb_i, br_i)$ $L = (\mathbf{KB}_L, \mathbf{BS}_L, \mathbf{ACC}_L)$

► What is a belief state? $S_i \in \mathbf{BS}_{L_i}$ is a belief set at C_i $\Rightarrow S = (S_1, ..., S_n)$ is a belief state of M

Syntax and Semantics of MCSs (2)

$$M = (C_1, \ldots, C_n)$$
 $C_i = (L_i, kb_i, br_i)$ $L = (\mathbf{KB}_L, \mathbf{BS}_L, \mathbf{ACC}_L)$

- ▶ What is a belief state? $S_i \in \mathbf{BS}_{L_i}$ is a belief set at C_i $\Rightarrow S = (S_1, ..., S_n)$ is a belief state of M
- What is a bridge rule?

$$(k:s) \leftarrow (c_1:p_1), \dots, (c_j:p_j),$$

not $(c_{j+1}:p_{j+1}), \dots,$ **not** $(c_m:p_m).$

Given a bridge rule r, intuitively...

... (c:p) looks at presence of belief p at context C_c (belief set S_c) ... r is applicable if positive p_i are present and negative p_i are absent ... applicable \Rightarrow s is added to knowledge base of context k

Syntax and Semantics of MCSs (3)

- Equilibrium semantics:
 - A belief state $S = (S_1, \ldots, S_n)$
 - ... makes certain bridge rules applicable,
 - ... so we can add their heads to the kb_i of the contexts.

Syntax and Semantics of MCSs (3)

- Equilibrium semantics:
 - A belief state $S = (S_1, \ldots, S_n)$
 - ... makes certain bridge rules applicable,
 - \dots so we can add their heads to the kb_i of the contexts.

Syntax and Semantics of MCSs (3)

- Equilibrium semantics:
 - A belief state $S = (S_1, \ldots, S_n)$
 - ... makes certain bridge rules applicable,
 - \dots so we can add their heads to the kb_i of the contexts.
 - S is an equilibrium iff each context plus these heads accepts S_i .
 - \Rightarrow Equilibrium condition: $S_i \in ACC(kb_i \cup H_i)$ for all C_i

Example - Contexts

Health care decision support system (wrt. medication and pneumonia):

- patient history database C_1 ,
- blood and X-Ray analysis database C_2 ,
- ▶ ontology of diseases C₃ (description logic),
- expert system C_4 (disjunctive logic program).

$$C_{1} = \{allergy_strong_ab\}$$

$$C_{2} = \{\neg blood_marker, xray_pneumonia\}$$

$$C_{3} = \{Pneumonia \sqcap Marker \sqsubseteq AtypPneumonia\}$$

$$C_{4} = \{give_strong \lor give_weak \leftarrow need_ab.$$

$$give_strong \leftarrow need_strong.$$

$$\bot \leftarrow give_strong, not allow_strong_ab.$$

$$give_nothing \leftarrow not need_ab, not need_strong.\}$$

 $S = (\{allergy_strong_ab\}, \{\neg blood_marker, xray_pneumonia\}, blood_marker, xray_pneumonia\}, blood_marker, xray_pneumonia\}, blood_marker, xray_pneumonia\}, blood_marker, xray_pneumonia}, blood_marker, xray_pneumonia},$

 $S = (\{allergy_strong_ab\}, \{\neg blood_marker, xray_pneumonia\}, \{Pneumonia(p)\}, \}$

$$\begin{split} S &= (\{allergy_strong_ab\}, \{\neg blood_marker, xray_pneumonia\}, \\ \{Pneumonia(p)\}, \{need_ab, \end{split}$$

 $S = (\{allergy_strong_ab\}, \{\neg blood_marker, xray_pneumonia\}, \\ \{Pneumonia(p)\}, \{need_ab, give_weak\}) \text{ is an equilibrium.} \end{cases}$

Inconsistency is the lack of an equilibrium.

We seek to understand and give reasons for inconsistencies.

- We use ideas from model-based diagnosis [Reiter 1987]
- Assumptions:
 - Contexts without input are consistent
 - Bridge rules characterize reasons for inconsistency

Inconsistency is the lack of an equilibrium.

We seek to understand and give reasons for inconsistencies.

- We use ideas from model-based diagnosis [Reiter 1987]
- Assumptions:
 - Contexts without input are consistent
 - Bridge rules characterize reasons for inconsistency
- Rationale:
 - Context internals are abstracted away "not our business"
 - Information flow can have unforeseen effects.
 - Knowledge integration between companies: changing company knowledge bases (often) impossible

Diagnoses and Explanations

Explaining inconsistency:

Consistency-based "Diagnosis":

Which bridge rules need to be changed to get an equilibrium?

- "changed" by removing the rule, or
- "changed" by adding the rule in its unconditional form
- ⇒ identifies some rules as "faulty" (causing inconsistency)
- \Rightarrow provides possible repairs

Diagnoses and Explanations

Explaining inconsistency:

Consistency-based "Diagnosis":

Which bridge rules need to be changed to get an equilibrium?

- "changed" by removing the rule, or
- "changed" by adding the rule in its unconditional form
- \Rightarrow identifies some rules as "faulty" (causing inconsistency)
- \Rightarrow provides possible repairs
- Entailment-based "Inconsistency Explanation":

Which bridge rules are required for inconsistency?

- "required", assuming all other rules are removed from the MCS
- \Rightarrow finds groups of rules which *together* cause inconsistency
- \Rightarrow allows to separate inconsistencies (if there are several of them)

Diagnosis:

"remove rules, or add them unconditionally, to get consistency"

Definition

A diagnosis is a pair
$$(D_1, D_2), D_1, D_2 \subseteq br_M$$
, such that

$$\frac{M[br_M \setminus D_1 \cup heads(D_2)]}{D_1 \cup heads(D_2)} \not\models \bot$$

Notation:

br_M	bridge rules of MCS M
M[R]	MCS M with bridge rules R instead of br_M
$M \models \bot$	MCS M is inconsistent
heads(R)	rules in <i>R</i> in unconditional form ($\alpha \leftarrow$ for $\alpha \leftarrow \beta$

Diagnosis:

"remove rules, or add them unconditionally, to get consistency"

Definition

A diagnosis is a pair
$$(D_1, D_2), D_1, D_2 \subseteq br_M$$
, such that

$$\frac{M[br_M \setminus D_1 \cup heads(D_2)]}{D_1 \cup heads(D_2)} \neq \bot$$

Notation:

br_M	bridge rules of MCS M
M[R]	MCS M with bridge rules R instead of br_M
$M \models \bot$	MCS M is inconsistent
heads(R)	rules in <i>R</i> in unconditional form ($\alpha \leftarrow$ for $\alpha \leftarrow \beta$)

$D^{\pm}(M)$: set of diagnoses of M $D_m^{\pm}(M) \subseteq D^{\pm}(M)$: set of pointwise \subseteq -minimal diagnoses of M

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ \Rightarrow No equilibrium

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ \Rightarrow No equilibrium Minimal diagnoses: $(\{r_1\}, \emptyset)$,

▶ remove $r_1 : (3 : Pneumonia(p)) \leftarrow (2 : xray_pneumonia).$ ⇒ $S_3 = \{Marker(p)\}, S_4 = \{give_nothing\}$

Example - Diagnoses

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ \Rightarrow No equilibrium Minimal diagnoses: $(\{r_1\}, \emptyset), (\{r_2\}, \emptyset),$

▶ remove
$$r_1 : (3 : Pneumonia(p)) \leftarrow (2 : xray_pneumonia).$$

⇒ $S_3 = \{Marker(p)\}, S_4 = \{give_nothing\}$

▶ remove
$$r_2 : (3 : Marker(p)) \leftarrow (2 : blood_marker).$$

⇒ $S_3 = \{Pneumonia(p)\}, S_4 = \{need_ab, give_weak\}$

Example - Diagnoses

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ \Rightarrow No equilibrium Minimal diagnoses: $(\{r_1\}, \emptyset), (\{r_2\}, \emptyset), (\{r_4\}, \emptyset),$ ▶ remove r_1 : (3 : *Pneumonia*(*p*)) \leftarrow (2 : *xray pneumonia*). $\Rightarrow S_3 = \{Marker(p)\}, S_4 = \{give nothing\}$ • remove $r_2: (3: Marker(p)) \leftarrow (2: blood marker).$ \Rightarrow $S_3 = \{Pneumonia(p)\}, S_4 = \{need \ ab, give \ weak\}$ ▶ remove r_4 : (4 : need strong) \leftarrow (3 : AtypPneumonia(p)). $\Rightarrow S_3 = \{Pneumonia(p), Marker(p), AtypPneumonia(p)\} \\S_4 = \{need_ab, give weak\}$

Example - Diagnoses

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ \Rightarrow No equilibrium Minimal diagnoses: $(\{r_1\}, \emptyset), (\{r_2\}, \emptyset), (\{r_4\}, \emptyset), \text{ and } (\emptyset, \{r_5\}).$ ▶ remove r_1 : (3 : *Pneumonia*(*p*)) \leftarrow (2 : *xray pneumonia*). $\Rightarrow S_3 = \{Marker(p)\}, S_4 = \{give nothing\}$ • remove $r_2: (3: Marker(p)) \leftarrow (2: blood marker).$ \Rightarrow $S_3 = \{Pneumonia(p)\}, S_4 = \{need \ ab, give \ weak\}$ ▶ remove r_4 : (4 : need strong) \leftarrow (3 : AtypPneumonia(p)). $\Rightarrow S_3 = \{Pneumonia(p), Marker(p), AtypPneumonia(p)\} \\ S_4 = \{need_ab, give_weak\}$ ▶ add r'_5 : (4 : allow strong ab) $\leftarrow not(1 : allergy strong ab)$. $\Rightarrow S_3 = \{Pneumonia(p), Marker(p), AtypPneumonia(p)\} \\S_4 = \{need_ab, need_strong, allow_strong_ab, give_strong\}$

Inconsistency Explanation:

"rules (heads) that must be present (absent) for inconsistency"

Definition

An inconsistency explanation is a pair (E_1, E_2) , $E_1, E_2 \subseteq br_M$, such that for each pair (R_1, R_2) , $E_1 \subseteq R_1 \subseteq br_M$, $R_2 \subseteq br_M \setminus E_2$ $M[R_1 \cup heads(R_2)] \models \bot$

 $E^{\pm}(M)$ ($E_m^{\pm}(M)$): sets of (\subseteq -minimal) inconsistency explanations in M

Inconsistency Explanation:

"rules (heads) that must be present (absent) for inconsistency"

Definition

An inconsistency explanation is a pair (E_1, E_2) , $E_1, E_2 \subseteq br_M$, such that for each pair (R_1, R_2) , $E_1 \subseteq R_1 \subseteq br_M$, $R_2 \subseteq br_M \setminus E_2$ $M[R_1 \cup heads(R_2)] \models \bot$

 $E^{\pm}(M)$ ($E_m^{\pm}(M)$): sets of (\subseteq -minimal) inconsistency explanations in M

Intuition:

- rules in E_1 create inconsistency
- ▶ all supersets inconsistent \Rightarrow inconsistency is relevant in *M*
- adding rules from *E*₂ unconditionally is necessary to restore consistency
- \Rightarrow related to minimal inconsistent sets

Example - Inconsistency Explanations

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ (as before)

• Minimal inconsistency explanation: $(\{r_1, r_2, r_4\}, \{r_5\})$.

Example - Inconsistency Explanations

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ (as before)

- Minimal inconsistency explanation: $(\{r_1, r_2, r_4\}, \{r_5\})$.
- Minimal diagnoses: $(\{r_1\}, \emptyset)$, $(\{r_2\}, \emptyset)$, $(\{r_4\}, \emptyset)$, and $(\emptyset, \{r_5\})$.

Assume $C_2 = \{blood_marker, xray_pneumonia\}$ (as before)

- Minimal inconsistency explanation: $(\{r_1, r_2, r_4\}, \{r_5\})$.
- Minimal diagnoses: $(\{r_1\}, \emptyset)$, $(\{r_2\}, \emptyset)$, $(\{r_4\}, \emptyset)$, and $(\emptyset, \{r_5\})$.

Theorem

For an inconsistent MCS, the unions of all minimal diagnoses D_m^{\pm} and all minimal inconsistency explanations E_m^{\pm} coincide: $| D_m^{\pm}(M) = | E_m^{\pm}(M)$

Notation: $\bigcup X = (\bigcup \{A \mid (A, B) \in X\}, \bigcup \{B \mid (A, B) \in X\})$ for X a set of (A, B)

 \Rightarrow Diagnoses and explanations identify the same bridge rules

- ▶ recall: equilibrium condition $S_i \in ACC(kb_i \cup H_i)$ for all C_i
- Output beliefs OUT_i: beliefs in bridge rule body literals

- ▶ recall: equilibrium condition $S_i \in ACC(kb_i \cup H_i)$ for all C_i
- Output beliefs OUT_i: beliefs in bridge rule body literals
- ▶ bridge rules depend on output projected belief sets $S'_i = S_i \cap OUT_i$
- ⇒ Context complexity = equilibrium existence condition:

 $S'_i \in \mathbf{ACC}_i(kb_i \cup H_i)\Big|_{OUT_i}$

Complexity: Inconsistency Analysis

- Problem: recognition of diagnosis/explanation
- ▶ Input: candidate (D_1, D_2) resp. (E_1, E_2) and M

Complexity: Inconsistency Analysis

- Problem: recognition of diagnosis/explanation
- ▶ Input: candidate (D_1, D_2) resp. (E_1, E_2) and M

Complexity Results (Completeness):

context	$(D_1,D_2) \stackrel{?}{\in}$		$(E_1,E_2) \stackrel{?}{\in}$	
complexity	$D^{\pm}(M)$	$D_m^{\pm}(M)$	$E^{\pm}(M)$	$E_m^{\pm}(M)$
Р	NP	DP	coNP	DP
NP	NP	DP	coNP	DP
$\Sigma_2^{ m P}$	$\Sigma_2^{ m P}$	D_2^P	Π_2^P	$\mathbf{D}_2^{\mathbf{P}}$
PSPACE	PSPACE			
EXPTIME	EXPTIME			

 $\mathbf{D}^{P}:$ solve both an \mathbf{NP} and an independent \mathbf{coNP} problem

D^{\pm} Computation using HEX-programs

HEX = ASP + Higher order features + external atoms

- Guess diagnosis
- Guess output belief state $\Rightarrow a_i$ atoms
- Evaluate bridge rules $\Rightarrow b_i$ atoms
- Check if output belief state is an output projected equilibrium:

equilibrium condition: $S'_i \in ACC_i(kb_i \cup H_i)|_{OUT_i}$

HEX constraint: $\perp \leftarrow not \& con_out_i[a_i, b_i]().$

Open source implementation is available:

http://www.kr.tuwien.ac.at/research/systems/dlvhex/mcsiesystem.html

Special Cases and Properties

Special Cases:

s-Diagnoses:

"Which rules must be removed to restore consistency?"

- s-Inconsistency Explanations:
 "Which rules must be present to get inconsistency?"
 - \Rightarrow duality holds
- "Splitting Sets" on MCS contexts
 - \Rightarrow modularity properties
- Preference orders which are different from subset-minimality:
 - \Rightarrow duality for certain Ceteris Paribus preference orderings

Explaining Inconsistency — Conclusions

We analyze inconsistencies to know "what's going on".

Our approach...

- uses inconsistency to gain information
- provides possible repairs via diagnoses
- allows to separate sources of inconsistency via explanations

Explaining Inconsistency — Conclusions

We analyze inconsistencies to know "what's going on".

Our approach...

- uses inconsistency to gain information
- provides possible repairs via diagnoses
- allows to separate sources of inconsistency via explanations

We aim at configurable inconsistency management:

- automatic repair may be dangerous (see our example)
- automatic repair may be useful in other cases
- diagnoses and explanations form a basis for inconsistency management

Current and Future work aims at...

- query answers on inconsistent MCSs
 - e.g., defining partial equilibria
 - e.g., defining brave and cautious query answers
- a local point of view to evaluation
 - \Rightarrow distributed algorithms
- approaches to compare diagnoses/explanations
 - \Rightarrow quantitative approaches inconsistency measures
 - ⇒ qualitative approaches using world knowledge
- implementations and benchmarks
 - relevant application scenarios
 - distributed implementation